Multi-SPMD Programming Paradigm for
Extreme Computing

-

Miwako TSUJI
RIKEN AICS, JAPAN

o
AICS

o= Agenda
=0

INTRODUCTION
VIllti SPMD Programming model
Overview
Background
Experiments
Collaborations with
numerical library group
accelerator group
Ealilt Tolerance in the Multi SPMD
CONCLUSION

o
AICS

O FP3C Framework and Programming for Post Petascale Computing

O September. 2010 — March. 2014

O Various research fields and their integration
Programming model and programming language design
Runtime libraries

Accelerator
Algorithm and mathematical libraries
etc... (|
R
il /57 sl [| e o

2 -FP3C Group — =

— % S R . m =
- Wy iversiTe o [S iy N . = :
'E o - 2 Y —
PR.SM VERSAILLES { ’ i DhavERsITY O TOxwo * PP p—

AICS
1

o= Agenda
=0

INTRODUCTION
VIllti SPMD Programming model
Overview
Background
Experiments
Collaborations with
numerical libraryigreup
accelerator group
Ealllt Tolerance in the Multi SPMDB
CONCLUSION

o
AICS

(O Multi-SPMD Programming MODEL

O Hierarchical systems
A node may consist of many general cores and accelerator
cores
A group of nodes tightly connected
A system consists of groups of nodes / a cluster of clusters

> Multi-programming methodologies across multi-architectural
levels

> Software had been developed to execute applications based on

I this programming model

(O Multi-SPMD Programming MODEL

shared
memory

distributed

workflow
parallel

HEEEEEEEEEEER
EEEEEEEEENEE
(Gl WH BN BN BN BN BN B

NODE

\

apanese and French techniques

<TASK 2> <TASK 4>

<TASK 5> <TASK 6> XMP StarPU

-

<TASK 7> UNIVERSITE DE VERSAILLES _.. .

SAINT QUENTIN EN YVELINES \
RIKEH a
ANCed | niputational Science

(O Multi-SPMD Programming MODEL

shared

distributed
~1la memory

ErYTEEEEEEEEN
Eb<~EEEEEEEERE
[
(G T BN BN BN BN BN .

W introduce
“parallelism” into tasks
by XMP

m “heavy” task can be
executed in parallel

TASK 2 .
S rench techniques

<TASK 5> <TASK 6> StarPU

-

1, & F
<TASK 7> SAINT QUENTIN EN YVELINES W Sy ®

W RIKsN a
ANCEC] NpUtational Science

(O Multi-SPMD Programming MODEL

m divide a large parallel shared

program into some memory

sub-programs to avoid '

the cost of

communication in large
S systems

(61 WH BN BN BN BN BN .

sTASK2> m Compose complex nch techniques

application by combining
parallel appreciations and

TASK 5> . .
SIASRS libraries

<TASK 7>

m
Aclvaliced niputational Science

(O Two cores: YML and XMP

distributed shared

workflow
parallel memory

(61 WH BN BN BN BN BN .

<TASK 2> <TASK 4> .
apanese and French techniques

<TASK 5> <TASK 6> XMP StarPU
X|\/| P-dev

-

<TASK 7> UNIVERSITE DE VERSAILLES : .

SAINT QUENTIN EN YVELINES et
RIKEH a
ANCed | niputational Science

XcalableMP (XMP)

http.//www.xcalablemp.org/

(O Background

O Directive-based language extension for scalable and performance-
aware parallel programming

O In XMP project, we have been developing a reference
implementation of XMP compiler.

O XMP source code
- C (or fortran) source code with XMP runtime library calls (MPI).
O Data mapping & Work mapping using template

#pragma xmp nodes p(4)

#pragma xmp template t(0:7)

#pragma xmp distribute t(block) onto p
int a[8];

#pragma xmp align ali] with t(i)

int main(){
#pragma xmp loop on t(i)
for(i=0;i<8;i++)

L...[']_"

O Background YML

htto.// yml.prism.uvsq.fr/

O A workflow programming environment
Component generator
Workflow Compiler
Scheduler
Middleware : OmniRPC (Cluster) and XtreamWeb (P2P)

O Components

Abstract
definition of interface

Implementation
description of a remote program with a specific interface
C++ Is supported.
We also support XMP!

Application

High level graph description language called YvetteML can
be used to describe workflow

1

(O OmniRPC (Middleware)

O Mitsuhisa Sato, Motonari Hirano, Yoshio Tanaka, Satoshi
Sekiguchi, "OmniRPC: A Grid RPC Facility for Cluster and Global
Computing in OpenMP". Proc. of WOMPAT 2001, pp. 130-136,
2001.

GridRPC (Remote Procedure Call)
master-worker parallel program is supported
O remote programs (rex) executed by exec, rsh and ssh

i

networ
w %
v
“ agent invocation agent
/

© O

(O OmniRPC-MPI (Middleware)

O OmniRPC extension for clusters
Remote programs can be executed in parallel

Invocation
=1 (M Pl_Comm_spawn

> N

Commnication
(MPI_Send, etc) —

(O How to develop applications

O Task development
Define interface (input/output) of a task
Define procedure of a task
C++, XMP, XMP-dev/StarPU, XMP for Fortran, MP!

(The original YML supported only C++, parallel
programming was not supported)

O Workflow development
Define dependency between tasks
YvetteML
Compile the definition into directed acyclic graph
yml_compiler
interpreted by yml_scheduler

(O Task development

<?xml version="1.0"7?>

<component type="impl" name="sample" abstract="sample">
<impl ="XMP" nodes="CPU:(16)" >

<templates>

<template name="t" format="block" size="256"/>
</templates>

<distribute>

<param template="t" name="A(256)" align="[i]:(1)"/>
<param template="t" name="B(256)" align="[i]:(i)"/>
</distribute>

<source>

<![CDATA[
inti;
#pragma xmp loop (i) on t(i)

for(i=0;i<256;i++){

Bli] = AlIT*A[];

(O Task (Remote Program) Generator

test.query
<impl ="XMP"..
| com t
ml_componen
(== = == e ‘74 —————————————————— I
| test.c test.idl I
: XMP-dev source code RPC-interface |
V4

I Kernel xmp-?mpiler Interface omnir|'gc-gen :
I \ 4

I [test_tmp.c Csource code with test.rex.c C source code :
I | XMP library call with RPC interface I
| — -

| C-compiler C-compiler '
: v \ :
| test.o test.rex.o |
| : — >
| R \’_ _______ : libomnirpc, libxmp _l

? libxmp_gpu, libstarpu
test.rex libmpi, etc...

(O Workflow Description in YvetteML

par if(k gt i) then
Ali]i] is initialized at random compute prodMat(B[K][k],BK][i]);
BIi][j] is initialized as an unit matrix notify(prodBIK][i]);
endpar endif
dd
oar call task Sar(i= 0:count-1) Parallel
Sﬁr(k:=0;count-1) do Execution
if (k neq 0) then |fi§|(ri1enqek);23 A) th
_ _ en
e\rlmvcjaill:[(prOdD FALK][K][K-11); - par (j:cik + 1;count-1) |
compute inversion(A[K][K],B[K][KI); d?/vait prodA[K][j]);
ir;czﬂfxéblnc\/oed’zﬁql[)kgr[‘l;]%; . ompute pro_dDiff(A[i][k],A[k][j],A[i][i]);
oar (i:(ik+1; count.1) notlfy-wait enndoc;ufy(prodD|ffA[|][|][k]);
do (dependency) ongif °
wait(blnversed ; if (k neq 0) then
compute prodMat(B[k][K],A[K][i]); par(j:=0;k-1)
notify(prodATK][i); do
eﬁgﬁcdo wait(prodBK][]); o
wait(binversed[kIK]): eﬁzr;c[)aute prodDiff(A[i][K],BIKI[j1,BIilll);
i:=0; t-1 '
Go el ondr YvetteML:
if(i neq k) then enddo simple workflow

compute mProdMat(A[i][k],B[k][k],BI[il[k]); enddo

ngfc]icfy(mProdB[k][i][k]); endpar
[:Iﬂw i
RIKE

language

(O Execute an application

invocation communication
node1 node2 lnvocatign - o - >

mpirun MPI_Comm_spawn

request
<task2>

remote programz2

,/
’
,l
s

A

<task 2>

-

,,,,,, request
<task3>

remote
programs programs

K1eaqi| [dW-DdYHILWwQ
R I3|Nppyds W

. <task 4>
Between scheduler 5>

and MPI

(O Experiment (1)

O Block Gauss Jordan
O B=AAN{N-1}
Compute the inversion

of a matrix by
computing the
inversion of a block
and updating other
blocks repeatedly

“uA "B

Inversion

i
HEE 'H
update...

http://www.aics.riken.jp/jp/k/system.html#kcomputerslide

Computation CPU SPARC64™ VIIIfx 2GHz

node specs Performance 128 GF
(16 GF x 8 cores)

Memory 16GB

-Number of racks 864

Number of nodes 82,944

Network Tofu Interconnect
(6D Mesh/Torus)

Peak performance 10.62 PF

Total memory capacity 1.26 PB

File system Fujitsu Exabyte File
System (FEFS)

Storage 30 PB

(O Experiment (1) Block Gauss Jordan on K

O Investigate different levels of hierarchical parallelism

the total size of matrix is fixed, but the number of blocks is
varied

the total number of processes for a workflow is fixed, but the
number of processes for each task is varied.

!
“1x1 blocks & all processes for a task” = distributed parallel
program
A small # of processes for a task = traditional workflow (the
original YML)

O 32,768 x 32, 768 matrix

block size 32768 16384 8192 4096 2048

O 4096 processes for a workflow
8~4096 processes for a task
(If 512 processes for a task, at most 8 tasks can be executed at

I the same time)

(O Experiment (1) Block Gauss Jordan on K

(sec)
3000
2500 YML:
many tasks (16x16 blocks)
5000 small # procs for each
task
1500
1000
XMP:
500 one task (1x1 block)
large # procs for the
0 task

38 16 04 256 512 1024 2048 4096
of processors for each task

(OExperiment (1) Block Gauss Jordan on K

8x8 blocks
512 procs/task

o= Agenda
=0

INTRODUCTION
Vilil'ti SPMD!Programming model
Overnview.
Background
Experiments
Collaborations with
numerical library group
accelerator group
Ealilt Tolerance in the Multi SPMB
CONCLUSION

@ ||
AICS

O MIRAM Multiple Implicitly Restarted Arnodi Method

O IRAM (Implicitly Restarted Arnodi Method)
lterative methods to obtain eigen pair of a matrix

O MIRAM
hybrid iterative method
invokes several IRAMs

with different parameters
exchanges information

DEYE
Server

Dat
between IRAMs to speedup i Nl e Al
convergence lteration updates lteration
O Schenk/nlpkkt240]Ehe results
. . rom
(UF Sparse Matrix Collection) IRAMS and

rows x cols 27,993,600/ 2 keeps the
of non-zeros 760,648,352 REIENCAVARS best one

O K-computer

PETSc/SLEPc/ARPACK
_b[“ (parallel numerical libraries)

(O MIRAM: Speedup Convergence

residual MIRAM 3 independent IRAMs

1.E+00
1.E-01
1.E-02
1.E-03
1.E-04
1.E-05
1.E-06
1.E-07
1.E-08
1.E-09
1.E-10
1.E-11

1 101 201 301 401 501 1 101 201 301 401 501
Iterations Iteration:

We can reduce the number of iterations!

1

(O MIRAM: Speedup Execution Time

Time (sec)
12500

10000
7500
5000
2500

0

64, 128, 256, 512 cores for each IRAM on K-Computer

—~Time (total)

—~-Time (comm)

—o

*— = @]

64 128 192 256 320 384 448 512

of processors for each IRAM

(O MIRAM Summary

Two different speedups based on
Two different programming models

e Reduce # of iterations

Workflow .
until convergence

Distributed . Reduce the Execution

Parallel time for each iteration

() XMP/StarPU

O Developed by Accelerator group (U. Tsukuba, INRIA Bordeaux)
StarPU

A Unified Runtime System for Heterogeneous Multicore
Architectures

Task-sharing between CPU and GPU
XMP

extended to write such task-sharing based on StarPU

O YML/XMP/StarPU for heterogeneous systems
allows to write tasks with XMP/StarPU

() YML+XMP+StarPU

management computation

| XMP-dev/StarPU
by U. Tsukuba
& INRIA Bordeaux

StarPU
control

Yml scheduler

Experiments
O Platform

Intel Xeon 2.70GHz 16core
NVIDIA Tesla K20Xm 2GPU

O Block DGEMM (2x2 blocks)
10000 x 10000 matrix (-> 5000x5000 block)

1

computation

RIKE

(O Experiments Block DGEMM with YML+XMP-dev+StarPU

40
(sec) m <task1>

35
m <task2>

30
m <task3>

25
m <task4>

20
m <task5>

15
10 <task6>
5 <task7>
0 <task8>

GPU CPU GPU CPU GPU CPU GPU CPU
CPU ratio 0.000 0.014 0.028 0.042

1

o= Agenda

INTRODUCTION
Vilil'ti SPMD!Programming model
Overnview.
Background
Experiments
Collaborationsiwith
numerical libraryigreup
accelerator group
Ealilt Tolerance in the Multi SPMD
CONCLUSION

@ ||
AICS

() Fault Tolerance in YML/XMP

node-0 node-1

node-2 node-3 node-4

awln

Aieiq| |dIN-Dd¥IUWQ pue
13|NPaYIS MO|PJMOM-TIAA

<task 1>

<task 2>

<task 3>

<task 1>

(O Fault Tolerance in YML/**")

O We have extend
Middleware
node-0 node-1 node-2 nc to detect errors
Workflow Scheduler
<task 1 to recover errors

S ad!'

detect error

>
% '

tasks
based on the

awlil
Aieaq] [dIN-DdyIuWQ pue
J8|ﬂp9l.pS MO|Jl)|JON\—‘| A

(O OmniRPC-MPI to OmniRPC-MPI-FT

O OmniRPC-MPI-FT
extension of OmniRPC-MPI to realize fault tolerance

O Assumption (a new job scheduler proposed [Mutal et
al.2013])

there is an error in a node used by a worker program,
all the other processes in the worker program are
stopped. These processes are not available until the
job is finished. On the other hand, the processes in
other worker programs and master program can
Continue- master worker-1 worker-2

An error in a master is critical l l l l
K

1

(O OmniRPC-MPI to OmniRPC-MPI-FT

O Implementation

Error detection using Heart
Beat (HB) messages

APl to ask whether a worker
Is dead or not

OmniRpcMpiCheckHand

worker1 master worker2

master checks

: next HB
res=alive

Ie(void *hd); worker-worker com

master checks worker

availab”ity master checks
OmniRpcMpiAskHandle next HB
Alive(int id);

worker checks worker

availability

1

() Workflow Scheduler

O YML workflow scheduler

sends requests to execute
tasks to the middleware
(OmniRPC-MPI library) based
on the DAG of a workflow
application

O YML workflow scheduler for FT

if an error is reported by the
middleware, then remove it
from the request-list and
return main loop

The main loop executes the
req again.

1

Yml::Core::SchedulerTask
*MpiBackend::retrievelmpl(void){
for(i=0;i<xNUMBER_REQUESTS;i+ +){
If(OmniRpcProbe(reqli])==success){
remove the req[i] from the request list
return task[i];
telse if(OmniRpcProbe(req[i])==fail){
remove the req[i] from the request
list
set the status of task][i] error
return task[i];
}else{
// req[i] is in execution
// retrievelmpl do nothing

)
)

return O;

(O Experiments --Environment

O The overhead of the fault detection

O The ability to find a failure and to recover from the
failure

O The elapsed time when error(s) occur.

O 65 nodes
1 node for YML workflow scheduler
64 nodes (1024 processes) for worker-programs

(tasks)
CPU FUJITSU
SPARC64IXfx
16core 1.65 GHz
Memory 32GB/s, 85GB/s
Compiler Fujitsu Compiler

1.2

_ILZIII RIKE

O Experiments -- Test Problem (Block-Gauss-Jordan)

O Compute an inversion of a matrix by inversions of a block of the
matrix and the updates of other blocks based on the inversions.

.IA .IB .III |

iInversion update...

O We can control the hierarchical parallelism levels easily by FP2C
Fix the matrix size (20480) total number of processes(1024)

Change the size of blocks and the number of processes for
each task (block)

_ =Simple SPMD
P04802 (12 blocks) & - A
2 tasks can be

)

(
51202 (42 blocks €4 cxecuted

25602 (82 blocks) -— simultaneously

4 tasks can be executed
simultaneously

= Simple workflow

1

() Experiments -- Results (w/o Error)

(sec)

700
600
500
400
300
200
100

0

1

w/o0 heartbeat ~ solid
The overhead of the fault detection W/ heartbeat - - dotted

|
- w/ and w/o heart beat
2~3% overhead

—)
-
-
= o,
= o,
-

-
-
-
-
-
C.d
L d
-
-
-

——01x01 ——02x02 ——04x04 08x08
01x01 -+-02x02 -+-04x04 -+-08x08

64 256 512 1024
procs/task

(O Experiments -- Error Scenarios

O The ability to find a failure an to recover from the
failure

O Difficult to encounter a real error

O Stop a process in worker programs randomly based
on several MTBFs

12.5, 25, 50 hours

O 10 times for each of (MTBF, procs/task, # of blocks)
combinations

1

O Experience - Timeline (observed in an experiment)

a group of nodes assigned for each t:

Inversion

U pdate

awi}

Error

Bl 4 blocks

256 processes for each task
M If a node in a group fails,
we can not use the group
until the job finishes

B The tasks failed are re-executed on another group

1

O Experience -- Completion ratio for each MTBFs
m1x1 block, 1024 procs/task

64 256 512 1024

(procs/task) {procs/task)

|] (simple XMP programming
model) always fails when
MTBF=125h thereis an error
B (no room to re-schedule the
oo ond? L task after error
= mmany small blocks and small
‘fmffi. # of procs/task are good
20480x20480 Matrix, 1024 processes in total 20480x20480 Matrix, 1024 processes in total
il | MTBF= 25IJFaster i worker-1 worker-2 :l
N I m i l 1

(O Experience -- Execution time ratio w/ error

O Execution time when there is at least one error

ignore the “lucky” case that an application is completed
without any error

ignore the "unlucky” case that an application is note completed

O Execution time increases
12% average, 3% min, 19% max

4 ix, 1024 processes in total
SRABCB WAl P 20480x20480 Matrix, 1024 processes in total

Execution time (sec)

800 T T 1 1
02x02 800 102 02 T T T
= X)
700 |- 04x04 —A— MTBF=25h] 700 | 04x04 —A— MTBF=50h |
\ 08x08 —w—
600 rs ‘ 7 o 600 A B
@
500 . 2 500+ -
%’
400 _@ = i 400 | -
o =)
300 = = —
300 fp— 2
SEST was BEST 2
200 | : g "
if no error 200 - 7
100 |- ‘ ' = 100 - -
0 1 1 1 1 o L | 1 L
64 256 512 1024 64 256 512 1024
(procs/task) (procs/task)

(O Experience -- Summary

O The overhead to detect error (HB messages) is only
2~3%

O The overhead to detect an error(s) and complete
application (even where there is an error(s) varies from
3-19%.

We can reduce it by controlling appropriate
decomposition of computational resources for the
multi SPMD programming model

The control is easy(!), if you use our programming
tool
O We've find that the best combination of SPMD and
workflow depends on MTBF

Again, we can control it easily by using our "multi-
SPMD" programming model

_IQI.“ RIKE

o= Agenda

INTRODUCTION
Vilil'ti SPMD!Programming model
Overnview.
Background
Experiments
Collaborations with
numerical libraryigreup
accelerator group
Ealilt Tolerance in the Multi SPMB
CONCLUSION

@ ||
AICS

() CONCLUSION

O FP3C

multi-SPMD programming mode|
multi-SPMD programming model
+ numerical algorithm
multi-SPMD programming model
+ XMP/StarPU

O After FP3C,

multi-SPMD programming model
+ fault tolerance

O Future work

1

collaboration with MDLS (MOU)
application side
TOTAL

