
Multi-SPMD Programming Paradigm for
Extreme Computing

Miwako TSUJI

RIKEN AICS, JAPAN

Agenda

INTRODUCTION

Multi SPMD Programming model

Overview

Background

Experiments

Collaborations with

numerical library group

accelerator group

Fault Tolerance in the Multi SPMD

CONCLUSION

FP3C Framework and Programming for Post Petascale Computing

 September. 2010 – March. 2014

 Various research fields and their integration

 Programming model and programming language design

 Runtime libraries

 Accelerator

 Algorithm and mathematical libraries

 etc…

2013.10.25 AKIHABARA

Agenda

INTRODUCTION

Multi SPMD Programming model

Overview

Background

Experiments

Collaborations with

numerical library group

accelerator group

Fault Tolerance in the Multi SPMD

CONCLUSION

accelerator

general
process core

 Hierarchical systems

 A node may consist of many general cores and accelerator
cores

 A group of nodes tightly connected

 A system consists of groups of nodes / a cluster of clusters

 Multi-programming methodologies across multi-architectural
levels

 Software had been developed to execute applications based on
this programming model

Multi-SPMD Programming MODEL

accelerator

general
process core

<TASK 2> <TASK 3>

<TASK 7>

<TASK 1>

<TASK 5> <TASK 6>

<TASK 4>

NODE NODE NODE

NODE NODE NODE

OpenMP
GPGPU

etc..

shared
memory

distributed
parallel

workflow

StarPUYML XMP
XMP-dev

UNIVERSITE DE VERSAILLES

SAINT QUENTIN EN YVELINES

Japanese and French techniques

Multi-SPMD Programming MODEL

accelerator

general
process core

<TASK 2> <TASK 3>

<TASK 7>

<TASK 1>

<TASK 5> <TASK 6>

<TASK 4>

NODE NODE NODE

NODE NODE NODE

OpenMP
GPGPU

etc..

shared
memory

distributed
parallel

workflow

StarPUYML XMP
XMP-dev

UNIVERSITE DE VERSAILLES

SAINT QUENTIN EN YVELINES

Japanese and French techniques

 introduce
“parallelism” into tasks
by XMP
 “heavy” task can be
executed in parallel

Multi-SPMD Programming MODEL

accelerator

general
process core

<TASK 2> <TASK 3>

<TASK 7>

<TASK 1>

<TASK 5> <TASK 6>

<TASK 4>

NODE NODE NODE

NODE NODE NODE

OpenMP
GPGPU

etc..

shared
memory

distributed
parallel

workflow

StarPUYML XMP
XMP-dev

UNIVERSITE DE VERSAILLES

SAINT QUENTIN EN YVELINES

Japanese and French techniques

 divide a large parallel
program into some
sub-programs to avoid
the cost of
communication in large
systems

 Compose complex
application by combining
parallel appreciations and
libraries

Multi-SPMD Programming MODEL

accelerator

general
process core

<TASK 2> <TASK 3>

<TASK 7>

<TASK 1>

<TASK 5> <TASK 6>

<TASK 4>

NODE NODE NODE

NODE NODE NODE

OpenMP
GPGPU

etc..

shared
memory

distributed
parallel

workflow

StarPUYML XMP
XMP-dev

UNIVERSITE DE VERSAILLES

SAINT QUENTIN EN YVELINES

Japanese and French techniques

Two cores: YML and XMP

 Directive-based language extension for scalable and performance-
aware parallel programming

 In XMP project, we have been developing a reference
implementation of XMP compiler.

 XMP source code

 C (or fortran) source code with XMP runtime library calls (MPI).

 Data mapping & Work mapping using template

XcalableMP (XMP)
http://www.xcalablemp.org/

#pragma xmp nodes p(4)
#pragma xmp template t(0:7)
#pragma xmp distribute t(block) onto p
int a[8];
#pragma xmp align a[i] with t(i)

int main(){
#pragma xmp loop on t(i)
for(i=0;i<8;i++)
a[i] = i;

Background

a[]

node1

node2

node3

node4

 A workflow programming environment

 Component generator

 Workflow Compiler

 Scheduler

 Middleware : OmniRPC (Cluster) and XtreamWeb (P2P)

 Components

 Abstract

 definition of interface

 Implementation

 description of a remote program with a specific interface

 C++ is supported.

 We also support XMP!

 Application

 High level graph description language called YvetteML can
be used to describe workflow

Background YML
http:// yml.prism.uvsq.fr/

OmniRPC (Middleware)

 Mitsuhisa Sato, Motonari Hirano, Yoshio Tanaka, Satoshi
Sekiguchi, "OmniRPC: A Grid RPC Facility for Cluster and Global
Computing in OpenMP". Proc. of WOMPAT 2001, pp. 130-136,
2001.

 GridRPC (Remote Procedure Call)

 master-worker parallel program is supported

 remote programs (rex) executed by exec, rsh and ssh

clien
t

networ
k

rex rex

agentagent invocation

communication

OmniRPC-MPI (Middleware)

 OmniRPC extension for clusters

 Remote programs can be executed in parallel

clien
t

rex

rexrex

rex

invocation
(MPI_Comm_spawn)

Commnication
(MPI_Send, etc)

How to develop applications

 Task development

 Define interface (input/output) of a task

 Define procedure of a task

 C++, XMP, XMP-dev/StarPU, XMP for Fortran, MPI

(The original YML supported only C++, parallel
programming was not supported)

 Workflow development

 Define dependency between tasks

 YvetteML

 Compile the definition into directed acyclic graph

 yml_compiler

 interpreted by yml_scheduler

Task development

<?xml version="1.0"?>

<component type="impl" name=“sample" abstract=“sample">

<impl lang="XMP" nodes="CPU:(16)" >

<templates>

<template name="t" format="block" size=“256"/>

</templates>

<distribute>

<param template="t" name="A(256)" align="[i]:(i)"/>

<param template="t" name="B(256)" align="[i]:(i)"/>

</distribute>

<source>

<![CDATA[

int i;

#pragma xmp loop (i) on t(i)

for(i=0;i<256;i++){

B[i] = A[i]*A[i];

…….

Task (Remote Program) Generator

test.idl
RPC-interface

test_tmp.c C source code with
XMP library call

test.rex

test.rex.c C source code
with RPC interface

test.rex.o

test.query
<impl lang=“XMP“..

test.o

test.c
XMP-dev source code

yml_component

xmp-compiler-dev

C-compiler C-compiler

omnirpc-genKernel Interface

libomnirpc, libxmp
libxmp_gpu, libstarpu

libmpi, etc…

notify-wait
(dependency)

Parallel
Execution

Workflow Description in YvetteML

call task

YvetteML:
simple workflow

language

Execute an application

mpirun

remote program1

<task 1>

remote program2

<task 2>

<task 3>

(wait) (wait)

remote
program3

<task 4>

remote
program4

<task 5>

MPI_Comm_spawn

request
<task2>

request
<task3>

invocation communication
node1 node2

ym
l_

sch
d

d
u

le
r

&
O

m
n

iR
P

C
-M

P
I lib

rary

Between scheduler
and MPI

Experiment (1)

 Block Gauss Jordan

 B=A^{^-1}

 Compute the inversion
of a matrix by
computing the
inversion of a block
and updating other
blocks repeatedly

A B
inversion

update…

http://www.aics.riken.jp/jp/k/system.html#kcomputerslide

 Investigate different levels of hierarchical parallelism

 the total size of matrix is fixed, but the number of blocks is
varied

 the total number of processes for a workflow is fixed, but the
number of processes for each task is varied.

↓

 “1x1 blocks & all processes for a task” ≒ distributed parallel
program

 A small # of processes for a task ≒ traditional workflow (the
original YML)

 32,768 x 32, 768 matrix

 4096 processes for a workflow

 8~4096 processes for a task

 (If 512 processes for a task, at most 8 tasks can be executed at
the same time)

blocks 1x1 2x2 4x4 8x8 16x16

block size 32768 16384 8192 4096 2048

Experiment (1) Block Gauss Jordan on K

0

500

1000

1500

2000

2500

3000

8 16 64 256 512 1024 2048 4096

● 2x2 ● 1x1

● 4x4

● 8x8

●

16x16

(sec)

of processors for each task

XMP:
one task (1x1 block)
large # procs for the

task

YML:
many tasks (16x16 blocks)

small # procs for each
task

YML+XMP

Experiment (1) Block Gauss Jordan on K

B=A^-1

A=AxB

C=-(BxA)

C=C-(BxA) TIME

8x8 blocks
512 procs/task

Experiment (1) Block Gauss Jordan on K

Agenda

INTRODUCTION

Multi SPMD Programming model

Overview

Background

Experiments

Collaborations with

numerical library group

accelerator group

Fault Tolerance in the Multi SPMD

CONCLUSION

MIRAM Multiple Implicitly Restarted Arnodi Method

 IRAM (Implicitly Restarted Arnodi Method)

 Iterative methods to obtain eigen pair of a matrix

 MIRAM

 hybrid iterative method

 invokes several IRAMs

with different parameters

 exchanges information

between IRAMs to speedup

convergence

 Schenk/nlpkkt240
(UF Sparse Matrix Collection)

rows x cols 27,993,600^2

of non-zeros 760,648,352

 K-computer

Data
Server

IRAM-1 IRAM-2

Arnoldi
Iteration

Hm & Vm

Hbest & Vbest

Arnoldi
Iteration

Hm & Vm

Hbest & Vbest

Data
Server
updates
the results
from
IRAMs and
keeps the
best one

PETSc/SLEPc/ARPACK
(parallel numerical libraries)

MIRAM: Speedup Convergence

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 101 201 301 401 501

m=24

m=32

m=40

tol

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 101 201 301 401 501

m=24

m=32

m=40

tol

iterations

residual MIRAM 3 independent IRAMs

iterations

We can reduce the number of iterations!

MIRAM: Speedup Execution Time

0

2500

5000

7500

10000

12500

0 64 128 192 256 320 384 448 512

Time (total)

Time (comm)

of processors for each IRAM

Time (sec)

64, 128, 256, 512 cores for each IRAM on K-Computer

MIRAM Summary

Workflow

Distributed

Parallel

• Reduce # of iterations

until convergence

• Reduce the Execution

time for each iteration

Two different speedups based on
Two different programming models

XMP/StarPU

 Developed by Accelerator group (U. Tsukuba, INRIA Bordeaux)

 StarPU

 A Unified Runtime System for Heterogeneous Multicore
Architectures

 Task-sharing between CPU and GPU

 XMP

 extended to write such task-sharing based on StarPU

 YML/XMP/StarPU for heterogeneous systems

 allows to write tasks with XMP/StarPU

Experiments

 Platform

 Intel Xeon 2.70GHz 16core

 NVIDIA Tesla K20Xm 2GPU

 Block DGEMM (2x2 blocks)

 10000 x 10000 matrix (-> 5000x5000 block)

CPU
GPU

computation

StarPU
control

Yml scheduler
GPU

CPU
GPU

computation

GPU

management

XMP-dev/StarPU
by U. Tsukuba
& INRIA Bordeaux

YML+XMP+StarPU

0

5

10

15

20

25

30

35

40

GPU CPU GPU CPU GPU CPU GPU CPU

<task1>

<task2>

<task3>

<task4>

<task5>

<task6>

<task7>

<task8>

0.000 0.014 0.028 0.042CPU ratio

(sec)

Experiments Block DGEMM with YML+XMP-dev+StarPU

Agenda

INTRODUCTION

Multi SPMD Programming model

Overview

Background

Experiments

Collaborations with

numerical library group

accelerator group

Fault Tolerance in the Multi SPMD

CONCLUSION

Fault Tolerance in YML/XMP

node-0 node-1 node-2 node-3 node-4

Y
M

L
-w

o
rk

flo
w

 sch
e

d
u

le
r

a
n

d
 O

m
n

iR
P

C
-M

P
I lib

ra
ry

tim
e

<task 1>
<task 2>

<task 3>

<task 1> <task 2>

<task 3>

Fault Tolerance in YML/XMP

node-0 node-1 node-2 node-3 node-4

Y
M

L
-w

o
rk

flo
w

 sch
e

d
u

le
r

a
n

d
 O

m
n

iR
P

C
-M

P
I lib

ra
ry

tim
e

<task 1>
<task 2>

<task 3>

<task 1>

<task 1> <task 2>

<task 3>

detect error

re-schedule
tasks

based on the
DAG

 We have extend
 Middleware
 to detect errors

 Workflow Scheduler
 to recover errors

OmniRPC-MPI to OmniRPC-MPI-FT

 OmniRPC-MPI-FT
 extension of OmniRPC-MPI to realize fault tolerance

 Assumption (a new job scheduler proposed [Mutai et
al.2013])
 there is an error in a node used by a worker program,

all the other processes in the worker program are
stopped. These processes are not available until the
job is finished. On the other hand, the processes in
other worker programs and master program can
continue.

 An error in a master is critical
master worker-1 worker-2

OmniRPC-MPI to OmniRPC-MPI-FT

 Implementation

 Error detection using Heart
Beat (HB) messages

 API to ask whether a worker
is dead or not

 OmniRpcMpiCheckHand
le(void *hd);

 master checks worker
availability

 OmniRpcMpiAskHandle
Alive(int id);

 worker checks worker
availability

Workflow Scheduler

 YML workflow scheduler

 sends requests to execute
tasks to the middleware
(OmniRPC-MPI library) based
on the DAG of a workflow
application

 YML workflow scheduler for FT

 if an error is reported by the
middleware, then remove it
from the request-list and
return main loop

 The main loop executes the
req again.

Yml::Core::SchedulerTask
*MpiBackend::retrieveImpl(void){

for(i=0;i<NUMBER_REQUESTS;i++){
if(OmniRpcProbe(req[i])==success){

remove the req[i] from the request list
return task[i];

}else if(OmniRpcProbe(req[i])==fail){
remove the req[i] from the request

list
set the status of task[i] error
return task[i];

}else{
// req[i] is in execution
// retrieveImpl do nothing

}
}
return 0;

}

Experiments --Environment

 The overhead of the fault detection

 The ability to find a failure and to recover from the
failure

 The elapsed time when error(s) occur.

 65 nodes
 1 node for YML workflow scheduler
 64 nodes (1024 processes) for worker-programs

(tasks) FX10 @ AICS

CPU FUJITSU
SPARC64IXfx
16core 1.65 GHz

Memory 32GB/s, 85GB/s

Compiler Fujitsu Compiler
1.2.1

Experiments -- Test Problem (Block-Gauss-Jordan)

 Compute an inversion of a matrix by inversions of a block of the
matrix and the updates of other blocks based on the inversions.

 We can control the hierarchical parallelism levels easily by FP2C

 Fix the matrix size (20480) total number of processes(1024)

 Change the size of blocks and the number of processes for
each task (block)

A B
inversion update…

64 256 512 1024

204802 (12 blocks) - - -

102402 (22 blocks) -

51202 (42 blocks)

25602 (82 blocks)

≒Simple SPMD

≒ Simple workflow

2 tasks can be
executed
simultaneously

4 tasks can be executed
simultaneously

Experiments -- Results (w/o Error)

procs/task

(sec)

0

100

200

300

400

500

600

700

64 256 512 1024

01x01 02x02 04x04 08x08

01x01 02x02 04x04 08x08

The overhead of the fault detection w/ heartbeat - - dotted
w/o heartbeat ― solid

w/ and w/o heart beat
2~3% overhead

Experiments -- Error Scenarios

 The ability to find a failure an to recover from the
failure

 Difficult to encounter a real error

 Stop a process in worker programs randomly based
on several MTBFs
 12.5, 25, 50 hours

 10 times for each of (MTBF, procs/task, # of blocks)
combinations

Experience - Timeline (observed in an experiment)

Inversion

Update

Error

a group of nodes assigned for each task

■ 4 blocks
256 processes for each task

■ If a node in a group fails,
we can not use the group
until the job finishes

■ The tasks failed are re-executed on another group

tim
e

Experience -- Completion ratio for each MTBFs
1x1 block, 1024 procs/task

(simple XMP programming
model) always fails when
there is an error
(no room to re-schedule the

task after error
many small blocks and small

of procs/task are good

MTBF=12.5h

MTBF=25h

MTBF=50h

master worker-1 worker-2

Experience -- Execution time ratio w/ error

 Execution time when there is at least one error

 ignore the “lucky” case that an application is completed
without any error

 ignore the “unlucky” case that an application is note completed

 Execution time increases

 12% average, 3% min, 19% max

was BEST
if no error

MTBF=25h

BEST

MTBF=50h

BEST

Experience -- Summary

 The overhead to detect error (HB messages) is only
2~3%

 The overhead to detect an error(s) and complete
application (even where there is an error(s) varies from
3-19%.
 We can reduce it by controlling appropriate

decomposition of computational resources for the
multi SPMD programming model

 The control is easy(!), if you use our programming
tool

 We’ve find that the best combination of SPMD and
workflow depends on MTBF
 Again, we can control it easily by using our “multi-

SPMD” programming model

Agenda

INTRODUCTION

Multi SPMD Programming model

Overview

Background

Experiments

Collaborations with

numerical library group

accelerator group

Fault Tolerance in the Multi SPMD

CONCLUSION

CONCLUSION

 FP3C

 multi-SPMD programming model

 multi-SPMD programming model

+ numerical algorithm

 multi-SPMD programming model

+ XMP/StarPU

 After FP3C,

 multi-SPMD programming model

+ fault tolerance

 Future work

 collaboration with MDLS (MOU)

 application side

 TOTAL

