

Collaborative Research between

DoE Labs and Tokyo Tech GSIC on
Extreme Scale Computing -

Success Stories
	
Satoshi Matsuoka

Professor
Global Scientific Information and Computing (GSIC) Center

Tokyo Institute of Technology
Fellow, Association for Computing Machinery (ACM)　& ISC

AICS Symposium

AICS-Riken, Kobe Japan
20160222

Successful Model of DoE Lab / Tokyo
Tech Collabora8on	

•  1.	
 Ini'al	
 agreement	
 on	
 collabora'on	
 area	
 w/DoE	
 group	

•  Funding	
 on	
 both	
 sides	
 not	
 mandated	
 but	
 desirable	

•  2.	
 Send	
 a	
 Ph.D.	
 guinea	
 pig	
 student	
 for	
 short-­‐term	
 (2mo)	

exploratory	
 hard	
 labor	
 internship	

•  3.	
 Usually	
 Tokyo	
 Tech	
 student	
 performs	
 extremely	
 well	
 =>	

tangible	
 collabora've	
 research	
 advance	

•  4.	
 Student	
 asked	
 back	
 for	
 longer-­‐term	
 (6	
 mo	
 or	
 greater)	

more	
 hard	
 labor	
 internship	

•  5.	
 Papers	
 published,	
 OSS	
 deliverables,	
 awards,	
 …	

•  6.	
 Student	
 obtains	
 Ph.D.	
 =>	
 hired	
 as	
 postdoc	
 at	
 DoE	
 Lab	

(much	
 higher	
 salary	
 than	
 being	
 hired	
 in	
 Japan!)	

Tokyo Tech Collabora8on Topics with
DoE Labs in the recent years	

•  Exascale	
 Resiliece	
 (Leonardo	
 Bau'sta-­‐Gomez@ANL,	

Kento	
 Sato@LLNL)	

• Performance	
 of	
 OpenMP-­‐MPI	
 Hybrid	
 Programming	
 on	

Many-­‐Core	
 (Abdelhalim	
 Amer@ANL)	

• Performance	
 Visualiza'on	
 (Kevin	
 Brown@LLNL)	

• Performance	
 Modeling	
 of	
 Tee	
 Code	
 with	
 ASPEN	

(Keisuke	
 Fukuda@ORNL)	

•  Large-­‐Scale	
 Graph	
 Store	
 in	
 NVM	
 	
 (Keita	
 Iwabuchi@LLNL)	

• OpenACC	
 Data	
 Layout	
 Extensions	
 (Tetsuya	

Hoshino@ORNL)	

• More	
 to	
 come…	

LLNL-­‐PRES-­‐664262	
 4	

[SC11, EuroPar12 & Cluster12 (Leonardo Bautista-­‐‑Gomez et al.)]	

Internship at ANL => PostDoc at ANL	

4	

ckpt	
 A3	

ckpt	
 A2	

ckpt	
 A1	

Parity	
 1	

Parity	
 4	

ckpt	
 D3	

ckpt	
 D2	

ckpt	
 D1	

Node	
 1	
 Node	
 2	
 Node	
 3	
 Node	
 4	

•  Diskless	
 checkpoint:	

–  Create	
 redundant	
 data	
 across	
 local	

storages	
 on	
 compute	
 nodes	
 using	
 a	

encoding	
 technique	
 such	
 as	
 Reed-­‐
solomon,	
 XOR	

•  Scalable	
 by	
 using	
 distributed	
 disks	

–  Can	
 restore	
 lost	
 checkpoints	
 on	
 a	
 failure	

caused	
 by	
 small	
 #	
 of	
 nodes	
 like	
 RAID-­‐5	

Diskless	
 checkpoin'ng	

ckpt	
 B3	

ckpt	
 B2	

Parity	
 2	

ckpt	
 B1	

ckpt	
 C3	

Parity	
 3	

ckpt	
 C2	

ckpt	
 C1	

Diskless	
 checkpoint	
 run'me	
 library	
 using	
 Reed-­‐Solomon	
 encoding	
 	

Ø 	
 FTI	
 implements	
 a	
 scalable	
 Reed-­‐
Solomon	
 encoding	
 algorithm	
 by	

u'lizing	
 local	
 storages	
 such	
 as	
 SSD	

	

Ø 	
 FTI	
 analyzes	
 the	
 topology	
 of	
 the	

system	
 and	
 create	
 encoding	

clusters	
 that	
 increase	
 the	

resilience	

API

Architecture

Modeling

Analysis

FTI (Multilevel checkpointing)

λ FTI is a multilevel checkpointing library with 4 levels of reliability. It has over 8000
lines of c/c++ (with Fortran bindings) under GPL2.1.
λ Download at http://www.github.com/leobago/fti and you can access the
documentation at http://leobago.github.io/fti
λ FTI discovers the location of the processes in the hardware and creates topology-
aware virtual rings to enhance reliability.
λ FTI can protect dynamic datasets, where the size, pointers or structure of the dataset
changes during the runtime.
λ FTI offers the option to dedicate one process per node for fault tolerance to minimize
the checkpoint overhead.
λ While using dedicated processes for asynchronous tasks FTI allows the user to do a
fine-grained selection about the tasks to offload.
λ While using dedicated processes, FTI splits the global communicator and returns a
new communicator to isolate the FT-dedicate ranks.
λ FTI monitors the timestep length and can dynamically adapt the checkpointing
interval during runtime, keeping a consistent state.
λ Applications ported: HACC, CESM (ice module), LAMMPS, GYSELA5D,
SPECFEM3D (CUDA version), HYDRO.

API and code example

int main(int argc, char **argv) {

 MPI_Init(&argc, &argv);
 FTI_Init(“conf.fti”, MPI_COMM_WORLD);

 double *grid;
 int i, steps=500, size=10000;
 initialize(grid);
 FTI_Protect(0, &i, 1, FTI_INTG);
 FTI_Protect(1, grid, size,FTI_DFLT);

 for (i=0; i<steps; i++) {
 FTI_Snapshot();
 kernel1(grid);
 kernel2(grid);
 comms(FTI_COMM_WORLD);
 }

 FTI_Finalize();
 MPI_Finalize();
 return 0;
}

File System: Classic Ckpt.
Slowest of all levels.

The most reliable. Power outage.

RS Encoding: Ckpt. Encoding.
Slow for large checkppoints.

Reliable, multiple node crashes.

Partner Copy: Ckpt. Replication.
Fast copy to neighbor node.

It tolerates single node crashes.

Local Storage: SSD, PCM, NVM.
Fastest checkpoint level.

Low reliability, transient failures.

0

5

10

15

20

25

30

35

40

600 1200 2400 4800 7200 9600

C
he

ck
po

in
tin

g
ov

er
he

ad
 (%

)

Numbers of cores

Weak Scaling Checkpointing
Overhead

No ckpt. FTI L1 FTI L2 FTI L3 FTI L4 PFS ckpt.

λ Weak scaling on MIRA (BG\Q)
λ LAMMPS, Lennard-Jones
simulation of 1.3 billion atoms
λ 512 nodes, 64 MPI processes per
node (32,678 processes)
λ Power monitoring and checkpoint
every ~5 minutes
λ Less than 5% overhead on time to
completion

λ Weak scaling to ~10k proc.
λ CURIE supercomputer in France
λ SSD on the compute nodes
λ HYDRO scientific application
λ Checkpointing every ~6 minutes

FTI scaling

Extreme-Scale Resilience for Billion-Way Parallelism	

•  Coordinators
–  US: Kento Sato, Kathryn Mohror, Adam Moody,

Todd Gamblin, Bronis R. de Sipinski (LLNL)
–  JP: Satoshi Matsuok (Tokyo Tech), Naoya

Maruyama (RIKEN)
•  Description

–  The Tokyo Tech group creates resilience APIs
for transparent and fast recovery, resilience
modeling for optimizing environment, and
resilience architecture for scalable and reliable
checkpoint/restart, then feeds back to SCR, the
production resilience library developed at LLNL.
The production library will be deployed in
TSUBAME3.0

•  How to collaborate
–  Biweekly meeting
–  Student / young researchers exchange

•  Deliverables
–  Pre-standardization of Resilience API	

–  Production resilience interface, SCR

8	

•  Schedule (DRAFT)
2015	
 2016	
 2017	
 2018	
 2019	
 2020	

Q
1

Q
2

Q
3

Q
4

Q
1

Q
2

Q
3

Q
4

Q
1

Q
2

Q
3

Q
4

Q
1

Q
2

Q
3

Q
4

Q
1

Q
2

Q
3

Q
4

Q
1

Q
2

Q
3

Q
4

TSUBAME2.5 TSUBAME3.0 TSUBAME3.X

Continuous update to production software upon feedbacks

Pre-standardized API Standardized API
Modeling for next generation systems 3.X Modeling for next generation systems 4.X

New arch. for next generation systems 3.X New arch. for next generation systems 4.X

US	
 JP	

Ch
ec
kp
oi
nt
	
 C
os
t	
 a

nd
	
 R
es
lie
nc
y	

Lo
w

H

ig
h

Local

Partner

⊕
XOR

Stable
Storage

Level
1

Level
2

Level
3 Parallel file system

Compute nodes

Resilience APIs

Resilience Modeling

Resilience Architecture:

Feedback to production

Scalable Checkpoint/Restart

Burst buffers

LLNL-PRES-665006

Kento Sato
LLNL Internship
Now LLNL PostDoc	

9	

int main (int *argc, char *argv[]) {
 FMI_Init(&argc, &argv);
 FMI_Comm_rank(FMI_COMM_WORLD, &rank);
 /* Application’s initialization */
 while (() < numloop) {
 /* Application’s program */
 }
 /* Application’s finalization */
 FMI_Finalize();
}

FMI	
 example	
 code	

n = FMI_Loop(…)

•  FMI_Loop	
 enables	
 transparent	
 recovery	
 and	
 roll-­‐
back	
 on	
 a	
 failure	

–  Periodically	
 write	
 a	
 checkpoint	

–  Restore	
 the	
 last	
 checkpoint	
 on	
 a	
 failure	

[IPDPS2014, Kento Sato et al.]	

0

500

1000

1500

2000

2500

0 500 1000 1500

Pe
rf

or
m

an
ce

 (G
Fl

op
s)

of Processes (12 processes/node)

MPI
FMI
MPI + C
FMI + C
FMI + C/R

Chapter 4: FMI: Fault Tolerant Messaging Interface 57

0

50

100

150

200

250

300

350

0 500 1000 1500

C/
R

Th
ro

ug
hp

ut
 (G

B/
se

co
nd

s)

of Processes

Checkpoint (XOR encoding)
Restart (XOR decoding)

Figure 4.13: Checkpoint/Restart scalability with 6 GB/node checkpoints, 12 process-
es/node

the performance of FMI with an MPI implementation. For those experiments, we used

MVAPICH2 version 1.2 running on top of SLURM [76].

4.6.1 FMI Performance

Table 4.2: Ping-Poing Performance of MPI and FMI

1-byte Latency Bandwidth (8MB)
MPI 3.555 usec 3.227 GB/s
FMI 3.573 usec 3.211 GB/s

We measured the point-to-point communication performance on Sierra, and compare

FMI to MVAPICH2. Table 4.2 shows the ping-pong communication latency for 1-byte

messages, and bandwidth for a message size of 8 MB. Because FMI can intercept MPI

calls, we compiled the same ping-pong source for both MPI and FMI. The results show

that FMI has very similar performance compared to MPI for both the latency and the

bandwidth. The overhead for providing fault tolerance in FMI is negligibly small for

messaging.

Because failure rates are expected to increase at extreme scale, checkpoint/restart for

failure recovery must be fast and scalable. To evaluate the scalability of checkpoint/restart

in FMI, we ran a benchmark which writes checkpoints (6 GB/node), and then recovers

P2P communication performance

Even with the high failure rate,
FMI incurs only a 28% overhead

MTBF: 1 minute

 FMI directly writes checkpoints
via memcpy, and can exploit the

bandwidth

API

Architecture

Modeling

Analysis

Example code & Evaluation

LLNL-­‐PRES-­‐665006	

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

Failure"rate"x1"" Failure"rate"x2" Failure"rate"x10"

Effi
cie

nc
y(

L2"cost"x1"/"Non=blocking"

L2"cost"x1"/"Blocking"

L2"cost"x2"/"Non=blocking"

L2"cost"x2"/"Blocking"

L2"cost"x10"/"Non=blocking"

L2"cost"x10"/"Blocking"

90% of efficiency in most cases	

[SC12, Kento Sato et al.]	

API

Architecture

Modeling

Analysis

•  Objective: Minimize checkpoint overhead to PFS
o  Minimize CPU usage, memory and network bandwidth

•  Proposed method: Implementation and modeling
Non-blocking checkpointing
o  Asynchronously write checkpoints to PFS through Staging nodes using

RDMA
o  Determine the optimal checkpoint interval on the asynchronous

checkpoint scheme

8%

Failure analysis on TSUBAME2.0

8-­‐12%	
 of	
 failures	
 s'll	
 	

requires	
 PFS	
 checkpoint	

x Computation state followed by
level-x checkpoint

x Recovery state from level-x
checkpoint

Transition to a recovery state
by level-2 failure

Transition to a computation
state by level-2 recovery

1 2

1

1 1 1

1 1

2

1 1 1

1 1
L2-0

1

1 2

1

1 1 1

1 1

2

1

2 1 1 1

1 1

L2-1 L2-2

Incomplete
segment 1

Complete
segment 2

Incomplete
segment 2

Complete
segment 3

Async.	
 checkpoin'ng	
 model	

LLNL-­‐PRES-­‐665006	

IPSJ SIG Technical Report

SSD#2# SSD#3# SSD#4#SSD#1# SSD#1# SSD#2# SSD#3# SSD#4#

Compute#
node#1#

Compute#
node#2#

Compute#
node#3#

Compute#
node#4#

Compute#
node#1##

Compute#
node#2#

Compute#
node#3#

Compute#
node#4#

PFS#(Parallel#file#system)# PFS#(Parallel#file#system)#

A single node

Fig. 2 (a) Left: Flat buffer system (b) Right: Burst buffer system

ging overhead. In addition, if we apply uncoordinated check-
pointing to MPI applications, indirect global synchronization can
occur. For example, process(a2) in cluster(A) wants to send a
message to process(b1) in cluster(B), which is writing its check-
point at that time. Process(a2) waits for process(b1) because pro-
cess(b1) is doing I/O and can not receive or reply to any mes-
sages, which keeps process (a1) waiting to checkpoint with pro-
cess (a2) in Figure 1. If such a dependency propagates across all
processes, it results in indirect global synchronization. Many MPI
applications exchange messages between processes in a shorter
period of time than is required for checkpoints, so we assume
uncoordinated checkpointing time is same as coordinated check-
pointing one in the model in Section 4.

2.4 Target Checkpoint/Restart Strategies
As discussed previously, multilevel and asynchronous ap-

proaches are more efficient than single and synchronous check-
point/restart respectively. However, there is a trade-off between
coordinated and uncoordinated checkpointing given an applica-
tion and the configuration. In this work, we compare the ef-
ficiency of multilevel asynchronous coordinated and uncoordi-
nated checkpoint/restart. However, because we have already
found that these approaches may be limited in increasing applica-
tion efficiencies at extreme scale [29], we also consider storage
architecture approaches.

3. Storage designs
Our goal is to achieve a more reliable system with more effi-

cient application executions. Thus, we consider not only a soft-
ware approach via checkpoint/restart techniques, but also con-
sider different storage architectures. In this section, we introduce
an mSATA-based SSD burst buffer system (Burst buffer system),
and explore the advantages by comparing to a representative cur-
rent storage system (Flat buffer system).

3.1 Current Flat Buffer System
In a flat buffer system (Figure 2 (a)), each compute node has

its dedicated node-local storage, such as an SSD, so this design
is scalable with increasing number of compute nodes. Several
supercomputers employ this flat buffer system [13], [22], [24].
However this design has drawbacks: unreliable checkpoint stor-
age and inefficient utilization of storage resources. Storing check-
points in node-local storage is not reliable because an applica-
tion can not restart its execution if a checkpoint is lost due to a
failed compute node. For example, if compute node 1 in Figure
2 (a) fails, a checkpoint on SSD 1 will be lost because SSD 1
is connected to the failed compute node 1. Storage devices can
be underutilized with uncoordinated checkpointing and message

logging. While the system can limit the number of processes to
restart, i.e., perform a partial restart, in a flat buffer system, lo-
cal storage is not utilized by processes which are not involved in
the partial restart. For example, if compute node 1 and 3 are in a
same cluster, and restart from a failure, the bandwidth of SSD 2
and 4 will not be utilized. Compute node 1 can write its check-
points on the SSD of compute node 2 as well as its own SSD in
order to utilize both of the SSDs on restart, but as argued earlier
distributing checkpoints across multiple compute nodes is not a
reliable solution.

Thus, future storage architectures require not only efficient but
reliable storage designs for resilient extreme scale computing.

3.2 Burst Buffer System
To solve the problems in a flat buffer system, we consider a

burst buffer system [21]. A burst buffer is a storage space to
bridge the gap in latency and bandwidth between node-local stor-
age and the PFS, and is shared by a subset of compute nodes.
Although additional nodes are required, a burst buffer can offer
a system many advantages including higher reliability and effi-
ciency over a flat buffer system. A burst buffer system is more
reliable for checkpointing because burst buffers are located on
a smaller number of dedicated I/O nodes, so the probability of
lost checkpoints is decreased. In addition, even if a large number
of compute nodes fail concurrently, an application can still ac-
cess the checkpoints from the burst buffer. A burst buffer system
provides more efficient utilization of storage resources for partial
restart of uncoordinated checkpointing because processes involv-
ing restart can exploit higher storage bandwidth. For example, if
compute node 1 and 3 are in the same cluster, and both restart
from a failure, the processes can utilize all SSD bandwidth unlike
a flat buffer system. This capability accelerates the partial restart
of uncoordinated checkpoint/restart.

Table 1 Node specification
CPU Intel Core i7-3770K CPU (3.50GHz x 4 cores)

Memory Cetus DDR3-1600 (16GB)
M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 msata 256GB CT256M4SSD3

(Peak read: 500MB/s, Peak write: 260MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Fram
RAID Card Adaptec RAID 7805Q ASR-7805Q Single

To explore the bandwidth we can achieve with only commod-
ity devices, we developed an mSATA-based SSD test system. The
detailed specification is shown in Table 1. The theoretical peak
of sequential read and write throughput of the mSATA-based SSD
is 500 MB/sec and 260 MB/sec, respectively. We aggregate the
eight SSDs into a RAID card, and connect two the RAID cards
via PCE-express(x8) 3.0. The theoretical peak performance of
this configuration is 8 GB/sec for read and 4.16 GB/sec for write
in total. Our preliminary results showed that actual read band-
width is 7.7 GB/sec (96% of peak) and write bandwidth is 3.8
GB/sec (91% of peak) [32] . By adding two more RAID cards,
and connecting via high-speed interconnects, we expect to be able
to build a burst buffer machine using only commodity devices
with 16 GB/sec of read, and 8.32 GB/sec of write throughput.

c⃝ 2013 Information Processing Society of Japan 3

IPSJ SIG Technical Report

SSD#2# SSD#3# SSD#4#SSD#1# SSD#1# SSD#2# SSD#3# SSD#4#

Compute#
node#1#

Compute#
node#2#

Compute#
node#3#

Compute#
node#4#

Compute#
node#1##

Compute#
node#2#

Compute#
node#3#

Compute#
node#4#

PFS#(Parallel#file#system)# PFS#(Parallel#file#system)#

A single node

Fig. 2 (a) Left: Flat buffer system (b) Right: Burst buffer system

ging overhead. In addition, if we apply uncoordinated check-
pointing to MPI applications, indirect global synchronization can
occur. For example, process(a2) in cluster(A) wants to send a
message to process(b1) in cluster(B), which is writing its check-
point at that time. Process(a2) waits for process(b1) because pro-
cess(b1) is doing I/O and can not receive or reply to any mes-
sages, which keeps process (a1) waiting to checkpoint with pro-
cess (a2) in Figure 1. If such a dependency propagates across all
processes, it results in indirect global synchronization. Many MPI
applications exchange messages between processes in a shorter
period of time than is required for checkpoints, so we assume
uncoordinated checkpointing time is same as coordinated check-
pointing one in the model in Section 4.

2.4 Target Checkpoint/Restart Strategies
As discussed previously, multilevel and asynchronous ap-

proaches are more efficient than single and synchronous check-
point/restart respectively. However, there is a trade-off between
coordinated and uncoordinated checkpointing given an applica-
tion and the configuration. In this work, we compare the ef-
ficiency of multilevel asynchronous coordinated and uncoordi-
nated checkpoint/restart. However, because we have already
found that these approaches may be limited in increasing applica-
tion efficiencies at extreme scale [29], we also consider storage
architecture approaches.

3. Storage designs
Our goal is to achieve a more reliable system with more effi-

cient application executions. Thus, we consider not only a soft-
ware approach via checkpoint/restart techniques, but also con-
sider different storage architectures. In this section, we introduce
an mSATA-based SSD burst buffer system (Burst buffer system),
and explore the advantages by comparing to a representative cur-
rent storage system (Flat buffer system).

3.1 Current Flat Buffer System
In a flat buffer system (Figure 2 (a)), each compute node has

its dedicated node-local storage, such as an SSD, so this design
is scalable with increasing number of compute nodes. Several
supercomputers employ this flat buffer system [13], [22], [24].
However this design has drawbacks: unreliable checkpoint stor-
age and inefficient utilization of storage resources. Storing check-
points in node-local storage is not reliable because an applica-
tion can not restart its execution if a checkpoint is lost due to a
failed compute node. For example, if compute node 1 in Figure
2 (a) fails, a checkpoint on SSD 1 will be lost because SSD 1
is connected to the failed compute node 1. Storage devices can
be underutilized with uncoordinated checkpointing and message

logging. While the system can limit the number of processes to
restart, i.e., perform a partial restart, in a flat buffer system, lo-
cal storage is not utilized by processes which are not involved in
the partial restart. For example, if compute node 1 and 3 are in a
same cluster, and restart from a failure, the bandwidth of SSD 2
and 4 will not be utilized. Compute node 1 can write its check-
points on the SSD of compute node 2 as well as its own SSD in
order to utilize both of the SSDs on restart, but as argued earlier
distributing checkpoints across multiple compute nodes is not a
reliable solution.

Thus, future storage architectures require not only efficient but
reliable storage designs for resilient extreme scale computing.

3.2 Burst Buffer System
To solve the problems in a flat buffer system, we consider a

burst buffer system [21]. A burst buffer is a storage space to
bridge the gap in latency and bandwidth between node-local stor-
age and the PFS, and is shared by a subset of compute nodes.
Although additional nodes are required, a burst buffer can offer
a system many advantages including higher reliability and effi-
ciency over a flat buffer system. A burst buffer system is more
reliable for checkpointing because burst buffers are located on
a smaller number of dedicated I/O nodes, so the probability of
lost checkpoints is decreased. In addition, even if a large number
of compute nodes fail concurrently, an application can still ac-
cess the checkpoints from the burst buffer. A burst buffer system
provides more efficient utilization of storage resources for partial
restart of uncoordinated checkpointing because processes involv-
ing restart can exploit higher storage bandwidth. For example, if
compute node 1 and 3 are in the same cluster, and both restart
from a failure, the processes can utilize all SSD bandwidth unlike
a flat buffer system. This capability accelerates the partial restart
of uncoordinated checkpoint/restart.

Table 1 Node specification
CPU Intel Core i7-3770K CPU (3.50GHz x 4 cores)

Memory Cetus DDR3-1600 (16GB)
M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 msata 256GB CT256M4SSD3

(Peak read: 500MB/s, Peak write: 260MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Fram
RAID Card Adaptec RAID 7805Q ASR-7805Q Single

To explore the bandwidth we can achieve with only commod-
ity devices, we developed an mSATA-based SSD test system. The
detailed specification is shown in Table 1. The theoretical peak
of sequential read and write throughput of the mSATA-based SSD
is 500 MB/sec and 260 MB/sec, respectively. We aggregate the
eight SSDs into a RAID card, and connect two the RAID cards
via PCE-express(x8) 3.0. The theoretical peak performance of
this configuration is 8 GB/sec for read and 4.16 GB/sec for write
in total. Our preliminary results showed that actual read band-
width is 7.7 GB/sec (96% of peak) and write bandwidth is 3.8
GB/sec (91% of peak) [32] . By adding two more RAID cards,
and connecting via high-speed interconnects, we expect to be able
to build a burst buffer machine using only commodity devices
with 16 GB/sec of read, and 8.32 GB/sec of write throughput.

c⃝ 2013 Information Processing Society of Japan 3

Interconnect :Mellanox FDR HCA (Model No.: MCX354A-FCBT)
11	

TSUBAME3.0	
 EBD	
 Prototype	
 mSATA	
 High	
 I/O	
 BW,	
 low	
 power	
 &	
 cost	

mSATA ☓ 8
(Read: 500MB/s,
Write: 260MB/s)

Adaptec RAID ☓
1

mSATA mSATA mSATA mSATA mSATA mSATA mSATA mSATA

EBD I/O

•  Provide	
 POSIX-­‐like	
 I/O	
 interfaces	

–  open,	
 read,	
 write	
 and	
 close	

–  Client	
 can	
 open	
 any	
 files	
 on	
 any	
 servers	

•  IBIO	
 use	
 ibverbs	
 for	
 communica'on	
 between	

clients	
 and	
 servers	

–  Exploit	
 network	
 bandwidth	
 of	
 infiniBand	
 	

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10 12 14 16

Re
ad

/W
ri

te
 th

ro
ug

hp
ut

 (G
B/

se
c)

of Processes

Read - Peak Read - Local Read - IBIO Read - NFS
Write - Peak Write - Local Write - IBIO Write - NFS

CCGrid2014 Best Paper
Award

(Kento Sato, Kathryn Mohror, Adam Moody,
Todd Gamblin, Bronis R. de Supinski, Naoya

Maruyama & Satoshi Matsuoka)

[CCGrid2014 (Best Paper Award), Kento Sato et al.]	

API

Architecture

Modeling

Analysis

LLNL-­‐PRES-­‐665006	

Resilience	
 modeling	
 overview	

12	

To	
 find	
 out	
 the	
 best	
 checkpoint/restart	
 strategy	
 for	
 systems	
 with	
 burst	
 buffers,	
 we	
 model	
 checkpoin'ng	
 strategies	

	

Hi
Compute	

node	

Si

i = 0	
 i > 0	

1 2 mi
Hi-1 Hi-1 Hi-1

Storage	
 Model: HN {m1, m2, . . . , mN }

Recursive	
 structured	
 storage	
 model	
 C/R	
 strategy	
 model	

Li = Ci + Ei	
 Oi =	

Ci + Ei (Sync.) 	

Ii (Async.)	

Ci or Ri =	

<	
 C/R	
 date	
 size	
 /	
 node	
 >☓	
 <#	
 of	
 C/R	
 nodes	
 per	
 Si

*	
 >	
 	

<	
 write	
 perf.	
 (
 wi)	
 	
 >	
 	
 	
 or	
 	
 	
 <read	
 perf.	
 (
 ri)	
 >	
 	

+	

1

1

1 1

2

1 11 1

1

1 1

2

1

2

1 1

11 2

1 1

1 1 1

1 1

1 1 21

k
p0 (t + ck)
t0 (t + ck)

k pi (t + ck)
ti (t + ck)i

k

k i

p0 (rk)

pi (rk)

p0 (rk)
t0 (rk)

ti (rk)

Duration
t + ck rk

No
failure

Failure

λi : i -level checkpoint time

: c -level checkpoint time
rc : c -level recovery time

cc
t : Interval

k 1

k

Successful
 Level-k
recovery

Successful
Computation

Level k
Failures during

recovery

! Level < k
Failures during

recovery

Level k
Failures during
computation or
checkpointing

!

Level < k
Failures during
computation or
checkpointing

1
Successful

Computation

Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T) = e−λT

t0(T) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T) =
λi

λ
(1 − e−λT)

ti(T) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT)
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure

6

k 1

k

Successful
 Level-k
recovery

Successful
Computation

Level k
Failures during

recovery

! Level < k
Failures during

recovery

Level k
Failures during
computation or
checkpointing

!

Level < k
Failures during
computation or
checkpointing

1
Successful

Computation

Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T) = e−λT

t0(T) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T) =
λi

λ
(1 − e−λT)

ti(T) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT)
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure

6

p0 (T)
t0 (T)

: No failure for T seconds
: Expected time when p0 (T)

pi (T)

ti (T)
: i - level failure for T seconds
: Expected time when pi (T)

MLC	
 model

[CCGrid2014 (Best Paper Award), Kento Sato et al.]	

IPSJ SIG Technical Report

Table 3 Simulation configuration

level 1 level 2
ri 16 GB/sec 10 GB/sec
wi 8.32 GB/sec 10 GB/sec

Flat buffer Burst buffer
H2 {v1, v2} H2 {1, 1088} H2 {32, 34}
{F1, F2} {2.13 × 10−6, 4.27 × 10−7} {2.13 × 10−6, 7.61 × 10−8}

Checkpoint size per node (D) 5GB
Encoding rate node (e1) 400MB/sec

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 10" 50" 100"

Effi
cie

nc
y(

Scale(factor((xF, xL2)(

Flat"Buffer6Coordinated" Flat"Buffer6Uncoordinated"
Burst"Buffer6Coordinated" Burst"Buffer6Uncoordinated"

Fig. 3 Efficiency of multi-level coordinated and uncoordinated check-
point/restart on a flat buffer system and a burst buffer system

compute nodes.
Failure rates(F) are based on failure analysis using pF3D [8].

The failure analysis shows that average failure rates of a single
compute node requiring LOCAL is 1.96×10−10, XOR is 1.77×10−9,
PFS is 3.93 × 10−10. In a flat buffer system, each failure rate
is calculated by multiplying the each failure rate by the num-
ber of compute nodes, i.e., 1088 nodes. This leads to failure
rates of Failure rate of a single Coastal nodes is We use fail-
ure analysis in 2.14 × 10−7 for LOCAL, 1.92 × 10−6 for XOR,
and 4.27 × 10−7 for PFS. Actually, if a level-i failure rate is
lower than a level-i+ 1 one, the optimal level i checkpoint counts
is zero because level i can be recovery level i + 1 checkpoint,
which is written more frequently than level i. If a compute nodes
failure occurs, a flat buffer system lose checkpoint data on the
failed compute node, so XOR is required to restore the lost check-
point data. Thus, we use 2 level checkpoint/restart where level
1 is XOR, and level 2 is PFS, and each level of failure rate is
{F1, F2} = {2.14 × 10−7 + 1.92 × 10−6, 4.27 × 10−7}.

In a burst buffer system, 34 burst buffer nodes are used, so fail-
ure rate of entire burst buffer nodes is calculated as 6.67 × 10−8,
failure rate requiring PFS as 1.33 × 10−8. Even on a com-
pute nodes failure, a burst buffer nodes can keep checkpoint
data, so LOCAL checkpoint is enough to tolerate a compute node
failure. Thus, we use 2 level checkpoint/restart where level 1
is LOCAL, and level 2 is PFS, and each level of failure rate is
{F1, F2} = {2.14×10−7 +1.92×10−6, 6.28×10−8 +1.33×10−8}
for burst buffer system.

5.2 Results
At extreme systems will be larger, overall failure rates and

checkpoint size are expected to increase. To explore the effects,
we increase failure rates and level 2 checkpoint costs by factors
of 1, 2, 10, 50 and 100, and compare efficiency between multi-
level coordinated and uncoordinated checkpoint/restart on a flat
buffer system and a burst buffer system. We do not change level
1 checkpoint cost, since the performance of flat and burst buffer
is expected to scale with system size.

As Figure 3 shows the efficiency under different failure rates
and checkpoint costs. When we computes the efficiency, we op-
timize level-1 and 2 checkpoint frequency (v1 and v2), and inter-
val between checkpoints (T) using our multi-level asynchronous
checkpoint/restart model, which yields the maximal efficiency.
The burst buffer system always achieves higher efficiency than
the flat buffer system. The efficiency gap becomes more apparent
with higher failure rates and higher checkpoint cost because the
burst buffer system integrate checkpoints into the fewer number
of burst buffer nodes than compute nodes, which decrease proba-
bility of losing checkpoints, and restarting from a slower PFS.

Table 4 Allowable message logging overhead

Flat buffer Burst buffer
scale factor Allowable message scale factor Allowable message

logging overhead logging overhead
1 0.0232% 1 0.00435%
2 0.0929% 2 0.0175%

10 2.45% 10 0.468%
50 84.5% 50 42.0%
100 ≈ 100% 100 99.9%

The efficiency in Figure 3 does not include message logging
overhead, so validity of uncoordinated checkpoint/restart depends
on degree of message logging overhead. Table 4 shows allowable
message logging overhead. To achieve higher efficiency than co-
ordinated checkpoint/restart, the logging overhead must be below
a few percent in a current and a 10 times scaled system. In sys-
tems whose failure rates and checkpoint costs is 50 times higher
than a current system, uncoordinated checkpoint/restart is neces-
sary even with high logging overhead. By using uncoordinated
checkpoint/restart, we can leverage a burst buffer, and achieve
70% of efficiency even on two order of magnitude larger scale
systems because partial restart of uncoordinated checkpoint can
exploit bandwidth of both burst buffers and a PFS, and accelerate
restart time.

Building a reliable data center or supercomputer, and maxi-
mizing system efficiency are significant given fixed amount of
cost. To explore which tiers of storage can impact system ef-
ficiency improvement, we increase performance of each tier of
storage failure by factors of 1, 2, 10 and 20. Figure 4 shows
efficiency in increasing scale factor of performance of level-1
checkpoint/restart in 100 times scaled systems in Figure 3. As
shown, improvement of flat buffer and burst buffer performance
does not impact the system efficiency. But, as in Figure 5, in-
creasing PFS performance improve the system efficiency, and we
can achieve over 80% efficiency with both coordinated and unco-
ordinated checkpoint/restart on the burst buffer system. The both

c⃝ 2013 Information Processing Society of Japan 5

MTBF = days a day 2, 3H 1H

API

Architecture

Modeling

Analysis

LLNL-­‐PRES-­‐665006	

Publications

•  Kento Sato, Kathryn Mohror, Adam Moody, Todd Gamblin,
Bronis R. de Supinski, Naoya Maruyama and Satoshi
Matsuoka, "A User-level InfiniBand-based File System
 and Checkpoint Strategy for Burst Buffers", In Proceedings
 of the 14th IEEE/ACM International Symposium on Cluster,
 Cloud and Grid Computing (CCGrid2014), Chicago, USA,
May, 2014. (Best Paper Award !!)

•  Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi
Matsuoka, "FMI: Fault Tolerant Messaging Interface for Fast and Transparent Recovery", In Proceedings of the
International Conference on Parallel and Distributed Processing Symposium 2014 (IPDPS2014), Phoenix, USA, May,
2014.

•  Kento Sato, Satoshi Matsuoka, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski and Naoya
Maruyama, "Burst SSD Buffer: Checkpoint Strategy at Extreme Scale", IPSJ SIG Technical Reports 2013-HPC-141,
Okinawa, Sep, 2013

•  Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi
Matsuoka, "Design and Modeling of a Non-blocking Checkpointing System", In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis 2012 (SC12), Salt Lake, USA, Nov,
2012.

•  Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi
Matsuoka, "Towards a Light-weight Non-blocking Checkpointing System", In HPC in Asia Workshop in conjunction
with the International Supercomputing Conference (ISC'12), Hamburg, Germany, June, 2012 (Poster)

•  Kento Sato,Adam Moody,Kathryn Mohror,Todd Gamblin,Bronis R. de Supinski, Naoya Maruyama and Satoshi
Matsuoka, "Design and Modeling of a Non-Blocking Checkpoint System", In ATIP - A*CRC Workshop on Accelerator
Technologies in High Performance Computing, Singapore, March, 2012. (Poster)

•  Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi
Matsuoka, "Design and Modeling of an Asynchronous Checkpointing System", IPSJ SIG Technical Reports 2012-
HPC-135 (SWoPP 2012), Tottori, Aug, 2012.

•  Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi
Matsuoka, "Towards an Asynchronous Checkpointing System", IPSJ SIG Technical Reports 2011-ARC-197 2011-
HPC-132 (HOKKE-19), Hokkaido, Nov, 2011.

IEEE/ACM CCGrid2014
Best Paper Award

LLNL-­‐PRES-­‐664262	

Tokyo Tech Billion Way Relience Project	

Graph500 ランキング 3位
大規模グラフ処理ベンチマークGraph500 の
TSUBAME 2.0 における挑戦
鈴村 豊太郎　　上野 晃司

SC'11テクニカル・ペーパー
Physis: ヘテロジニアススパコン向けステンシル
計算フレームワーク
丸山 直也　　野村 達男　　佐藤 賢斗　　松岡 聡

SC'11テクニカル・ペーパー（最高得点獲得）
FTI :ヘテロジニアススパコン向け耐障害インタフェース
～100TFlops超　東北地方太平洋沖地震シミュレーション ～
Leonardo Bautista-Gomez Dimitri Komatitch 丸山 直也 坪井 誠司
Franck Cappello 松岡 聡 中村 武

14

23

18

SC11 Technical Paper
Perfect Score Award
(Leonardo Batista Gomez, Seiji

Tsuboi, Dimitri Komatitsch, Frank
Cappello, Naoya Maruyama &

Satoshi Matsuoka)

NVM Energy Model
[FTXS2013]

FTI: Fault Tolerance Interface
[SC11, EuroPar12, Cluster12]

FMI: Fault Tolerant Messaging Interface
[IPDPS2014]

Fault-in-Place Network Architecture
[SC14]

NVCR: GPU C/R library
[HCW2011]

Async. C/R
[SC12]

Async. Model
[SC12]

API
software

Architecture

Model

Analysis Failure Monitoring
[IPSJ Tech Report]

FP Compression
[Submitted to IPDPS2015]

API to resource manager
& scheduler

Failure Prediction

Failure Analysis
w/ Machine Learning

NVM Durability model

Standardization of
failure log

IBIO: Infiniband I/O
[CCGrid2014]

Burst buffer architecture
[CCGrid 2014]

Storage Model
[CCGrid2014]

CCGrid2014 Best Paper
Award

(Kento Sato, Kathryn Mohror, Adam Moody,
Todd Gamblin, Bronis R. de Supinski, Naoya

Maruyama & Satoshi Matsuoka)

§  Visits	

–  Abdelhalim	
 Amer,	
 PhD.	
 Student	
 at	
 Tokyo	

Ins'tute	
 of	
 Technology	

–  Sept	
 2013	
 –	
 Nov	
 2013	
 (Tokyo	
 Tech	
 à	
 ANL)	

•  Characterizing	
 lock	
 conten'on	
 in	
 mul'threaded	

MPI	
 applica'ons	

–  Nov	
 2013	
 –	
 Apr	
 2013	
 (ANL	
 à	
 Tokyo	
 Tech)	

•  Develop	
 hybrid	
 MPI	
 kernels	
 relying	
 on	

mul'threaded	
 communica'on	

15	

OpenMP-MPI Performance collaboration w/ANL -
Abdelhalim Amer

–  Apr	
 2014	
 -­‐	
 Sep2014	
 (Tokyo	
 Tech	
 à	
 ANL)	

•  Large	
 scale	
 analysis	
 of	
 hybrid	
 MPI	
 graph	
 traversal	
 kernels	

•  Characterize	
 and	
 mi'gate	
 thread	
 arbitra'on	
 issues	
 to	
 enhance	
 communica'on	

progress	

–  Apr	
 2015	
 ~:	
 Postdoc	
 at	
 ANL.	
 Planning	
 for	
 future	
 collabora'ons/visits	

§  Outcome	

–  Two	
 publica'ons	
 (PPoPP’15	
 and	
 PPMM’)	

–  Sorware	
 contribu'on	
 to	
 the	
 MPICH	
 library	

–  Ongoing	
 collabora'on	

Abdelhalim Amer (Halim)
Postdoctoral Researcher, ANL

Research and Achievements Summary

§  Characterizing	
 state-­‐of-­‐the-­‐art	
 MPI+Threads	
 run'mes	

–  Applica'on	
 and	
 run'me	
 perspec'ves	

–  Large	
 scale	
 analysis	
 (512K	
 cores	
 on	
 Mira)	

§  Exposing	
 thread-­‐synchroniza'on	
 issues	
 the	
 MPI-­‐run'me	

§  Develop	
 MPI-­‐aware	
 thread-­‐synchroniza'on	
 to	
 improve	
 run'me	
 performance	

Pros	
 and	
 Cons	
 of	
 MPI+Threads	
 at	

Large	
 Scale?	

Run:me	
 Conten:on	
 in	

Mul:threaded	
 MPI	
 due	
 to	

Thread-­‐Safety	
 	

Reducing	
 Conten:on	
 by	

Improving	
 Cri:cal	
 Sec:on	

Arbitra:on	
 [ACM	
 PPoPP’	
 15]	

Characterizing	
 Large	
 Scale	
 	
 MPI	
 +	

Threads	
 [PPMM’15]	

A
pp

s
+

R
un

tim
e

R
un

tim
e

Sy
st

em

[ACM	
 PPOPP’15]	
 Abdelhalim	
 Amer,	
 Huiwei	
 Lu,	
 Yanjie	
 Wei,	
 Pavan	
 Balaji	
 and	

Satoshi	
 Matsuoka.	
 MPI+Threads:	
 Run:me	
 Conten:on	
 and	
 Remedies.	
 ACM	

SIGPLAN	
 Symposium	
 on	
 Principles	
 and	
 Prac:ce	
 of	
 Parallel	
 Programming	
 (PPoPP)	

[PPMM’15]	
 Abdelhalim	
 Amer,	
 Huiwei	
 Lu,	
 Pavan	
 Balaji,	
 and	
 Satoshi	
 Matsuoka.	

Characterizing	
 MPI	
 and	
 Hybrid	
 MPI+Threads	
 Applica:ons	
 at	
 Scale:	
 Case	
 Study	
 with	

BFS.	
 Workshop	
 on	
 Parallel	
 Programming	
 Model	
 for	
 the	
 Masses	
 (PPMM)	

This small, synthetic graph was
generated by a method called
Kronecker multiplication. (Jeremiah
Willcock, Indiana University)

Large-Scale MPI+Threads Graph Analytics
Characterization on BG/Q [PPMM’15]

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

128 1024 8192 65536 524288

Pe
rf

or
m

an
ce

 (G
TE

PS
)

Number of Cores

Processes

Hybrid

0

2

4

6

8

10

12

14

16

128 1024 8192 65536 524288

Pe
rf

or
m

an
ce

 (G
TE

PS
)

Number of Cores

MPI-Only
Hybrid
MPI-Only-Optmized
Hybrid-Optmized

Core-to-Core vs. Node-to-
Node Data Movement:
•  MPI+Threads does better

but cannot do miracles!

Process-level scalability
optimizations:
•  MPI+Threads

experiences overheads

0

5

10

15

20

25

128 1024 8192 65536 524288
Pe

rf
or

m
an

ce
 (G

TE
PS

)
Number of Cores

Processes+LP+IB
Hybrid+LP+IB
Hybrid+LP+IB+FG

Thread-synchronization
optimization:
•  Fine-grained locking

Communication Progress and Thread-Synchronization:
Beware of Unbounded-Unfairness [PPoPP’15]

§  FIFO	
 locks	
 overcome	
 the	

shortcomings	
 of	
 mutexes	

§  Polling	
 for	
 progress	
 can	
 be	
 wasteful	

(wai:ng	
 does	
 not	
 generate	
 work!)	

§  Priori'zing	
 issuing	
 opera'ons	

•  Feed	
 the	
 communica'on	
 pipeline	

•  Reduce	
 chances	
 of	
 wasteful	
 internal	

process	
 (e.g.	
 more	
 requests	
 on	
 the	
 fly	

è	
 higher	
 chances	
 of	
 making	

progress)	

MPI_CALL_ENTER	

MPI_CALL_EXIT	

CS_ENTER	

CS_ENTER	

CS_EXIT	

CS_EXIT	

YIELD	

OPERATION	

COMPLETE?	

YES	

NO	

2	

1	

Time
Penalty

Fairness (FIFO) reduces wasted
resource acquisitions

Time
Penalty

Pthread Mutex

FIFO Lock

Adapt arbitration to maximize work

65536

131072

262144

524288

1 16 256 4096

 R
at

e
(M

es
sa

ge
s/

s)

Message Size (Bytes)

Mutex
Ticket
Priority

Message Rate between two 36
Haswell cores nodes SWAP-Assembler Genome assembly application

4

16

64

256

1024

4 32 256 2048

Ex
ec

ut
io

n
Ti

m
e

[s
]

Number of Cores

Mutex
Ticket
Priority

2	

Insightul	
 Analysis	
 of	
 Performance	
 Metrics	
 on	

Fat-­‐tree	
 Networks[Kevin	
 Brown,	
 ICPADS15]	

source	

port	

dest.	

port	

traffic	

(kb)	

a	
 b	
 5	

b	
 a	
 15	

process	
 2	

app	

Open	
 MPI	

library	

network	

hardware	

app	

Open	
 MPI	

library	

network	

hardware	

process	
 1	
 network	
 communica'on	

profile	

Profiler	

Non-­‐intrusive	
 collec'on	
 of	

performance	
 metrics	
 w/	

our	
 ibprof	
 profiler	

•  Low	
 overhead	

•  Captures	
 links	
 traffic	

Hardware-­‐centric	

traffic	
 visualiza'on	

BoxFish	
 for	
 FatTree	

compute	

nodes	

switches	

1	

Tree-­‐topology	
 viz.	
 design	

Insightul	
 Analysis	
 of	
 Performance	
 Metrics	

on	
 Fat-­‐tree	
 Networks	

3	
 Tree-­‐topology	
 viz.	
 design	
 Adjacency	
 matrix	
 viz.	
 design	

Each	
 element	
 represents	
 a	
 link	

ü  No	
 occlusion	
 of	
 data	

ü  Space	
 efficient	
 design	

ü  More	
 link	
 design	
 op'ons	

Square	

Bisected	
 square	

Triangle	
 pair	

Data	
 (traffic,	
 load,	
 etc.)	
 is	
 encoded	
 in	
 the	
 size,	
 shape,	
 color,	
 and/or	
 hue	
 of	
 the	
 links	

ibprof’s	
 Profiling	
 Overhead	

21	

21 25 210 215 220 223

0

20

40

60

80

100

Message Size (bytes)

O
ve

rh
ea

d
(%

)

bcast
reduce
ping-pong

21 25 210 215 220 223

�2

0

2

4

6

8

10

Message Size (bytes)

alltoall scatter
gather allgather
allreduce

(a) Intel MPI Bencharmark

ft is cg mg bt sp lu

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

-32ms

56ms

0.3ms

-39ms

14ms
47ms 58ms

Kernels & Psuedo Apps

kernel

pseudo app

(b) NAS Parallel Benchmarks

Fig. 5. Runtime overhead of communication profiling. Subfigure (5a) shows the percentage increase in communication latency for the various IMB benchmarks.
These results are separated into two charts for increased readability. Subfigure (5b) shows the increase in runtime of NPB kernels and pseudo applications. The
height of each bar represents the overhead as a percentage of the communication runtime and the bars annotation states the actual change in communication
runtime.

2) Increase in Communication Latency: Figure 5 shows the
results of our experiments. These graphs represent the increase
in communication latency caused by our profiler and does not re-
flect the time for dumping profiles. Results were averaged across
all 100 pairs of runs with standard errors <1% in all cases. The
average overhead was 11.6%, 3.4%, and 1.3% for MPI_Bcast,
MPI_Reduce, and MPI_Scatter, respectively, over all
message sizes while other IMB benchmarks averaged below
1% overhead. Similarly, all NPB benchmarks averaged below
1%, with the communication-bound FT benchmark reporting
the highest value of 0.46%.

The averaged runtime differences were in the order of
microseconds for the IMB benchmarks and milliseconds for
the NPB benchmark. Because such small differences could
be attributed to jitters in the system, we ran similar exper-
iments at different times over several days for verification.
Similar trends were observed in the results with some runs
occasionally reporting negative overheads and all overheads
remaining negligible except for spikes in the MPI_Bcast
and MPI_Reduce results for the message sizes shown. We
confirmed that the spike in the MPI_Bcast can be attributed
to Open MPI switching from the send/receive semantics to
RDMA pipeline protocol when the message size surpasses
256 KB. We ran a set of MPI_Bcast trials with the RDMA
pipeline size limit changed from 256 KB to 1 MB and the
pipeline send length changed from 1 MB to 4 MB. As expected,
we observed additional spikes for messages between 1 MB and
4 MB in size. Further research is being planned to ascertain
the cause of this phenomenon.

3) Increase in Application Runtime: The total increase in
application runtime when ibprof is used is equal to the
increase in communication latency plus the time taken to write
profiles. On our system, the time taken for a complete profile
dump was less than 1 seconds, irrespective of the application
or communication pattern. This time is dependent on the IO
subsystem’s performance, which is beyond the scope of this
work.

VI. CASE STUDY

In this Section, we showcase the usability of our profiling
approach and analysis toolchain. We analyze the execution of

samplesort, a popular sorting algorithm for parallel systems,
and we also compare the performance of different MPI library
versions. Experiments were conducted on TSUBAME2.5, which
utilizes two independent IB subnets and each compute node
has a link to each subnet.

A. Visualizing Traffic Patterns and Contention in Samplesort

Samplesort, as described in [19], is a sorting algorithm for
distributed memory environments. The main idea behind the
algorithm is to find a set splitters to partition the input keys into
p buckets corresponding to p processes in such a way that every
element in the i

th bucket is less than or equal to each of the
elements in the (i+ 1)th bucket. Because splitters are selected
randomly, the resulting bucket sizes may be uneven. This could
result in communication and computation imbalances when
keys are shuffled and sorted, respectively.

For our experiment, we used the samplesort code presented
in [19] 1. We executed samplesort with 128 MPI processes,
using a 1:1 process-to-node mapping. Each process started
with 1 GB of unsorted integers, randomly generated with a
uniform distribution. The same random number seed was
used in all cases. Fig. 6 shows a typlical process-centric
visualization of samplesort’s main communication routines over
128 nodes using Paraver. We are unable to extract any network
performance insights from this and other similar visualizations
that are generated using PMPI-based instrumentation tools.

1) Performance Analysis using our ibprof Profiler and
our Boxfish Module: We profiled an execution of samplesort
using ibprof and visualized the network traffic in our
Boxfish fat tree module. Segments of the code were manually
instrumented to enable the identification of the code block
where the all-to-all key exchange is conducted in order to
perform a meaningful analysis. Fig. 7 shows the network traffic
generated by the main communication routines of samplesort.
This section of the profile reflects the traffic generated by the
segment of the program highlighted in Fig. 6.

The red links that are visible in area C of Fig. 7 represent
links that were carrying the most traffic during the commu-
nication block of the code. By exploring the visualization

1Source code: http://users.ices.utexas.edu/˜hari/talks/hyksort.html

21 25 210 215 220 223

0

20

40

60

80

100

Message Size (bytes)

O
ve

rh
ea

d
(%

)

bcast
reduce
ping-pong

21 25 210 215 220 223

�2

0

2

4

6

8

10

Message Size (bytes)

alltoall scatter
gather allgather
allreduce

(a) Intel MPI Bencharmark

ft is cg mg bt sp lu

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

-32ms

56ms

0.3ms

-39ms

14ms
47ms 58ms

Kernels & Psuedo Apps

kernel

pseudo app

(b) NAS Parallel Benchmarks

Fig. 5. Runtime overhead of communication profiling. Subfigure (5a) shows the percentage increase in communication latency for the various IMB benchmarks.
These results are separated into two charts for increased readability. Subfigure (5b) shows the increase in runtime of NPB kernels and pseudo applications. The
height of each bar represents the overhead as a percentage of the communication runtime and the bars annotation states the actual change in communication
runtime.

2) Increase in Communication Latency: Figure 5 shows the
results of our experiments. These graphs represent the increase
in communication latency caused by our profiler and does not re-
flect the time for dumping profiles. Results were averaged across
all 100 pairs of runs with standard errors <1% in all cases. The
average overhead was 11.6%, 3.4%, and 1.3% for MPI_Bcast,
MPI_Reduce, and MPI_Scatter, respectively, over all
message sizes while other IMB benchmarks averaged below
1% overhead. Similarly, all NPB benchmarks averaged below
1%, with the communication-bound FT benchmark reporting
the highest value of 0.46%.

The averaged runtime differences were in the order of
microseconds for the IMB benchmarks and milliseconds for
the NPB benchmark. Because such small differences could
be attributed to jitters in the system, we ran similar exper-
iments at different times over several days for verification.
Similar trends were observed in the results with some runs
occasionally reporting negative overheads and all overheads
remaining negligible except for spikes in the MPI_Bcast
and MPI_Reduce results for the message sizes shown. We
confirmed that the spike in the MPI_Bcast can be attributed
to Open MPI switching from the send/receive semantics to
RDMA pipeline protocol when the message size surpasses
256 KB. We ran a set of MPI_Bcast trials with the RDMA
pipeline size limit changed from 256 KB to 1 MB and the
pipeline send length changed from 1 MB to 4 MB. As expected,
we observed additional spikes for messages between 1 MB and
4 MB in size. Further research is being planned to ascertain
the cause of this phenomenon.

3) Increase in Application Runtime: The total increase in
application runtime when ibprof is used is equal to the
increase in communication latency plus the time taken to write
profiles. On our system, the time taken for a complete profile
dump was less than 1 seconds, irrespective of the application
or communication pattern. This time is dependent on the IO
subsystem’s performance, which is beyond the scope of this
work.

VI. CASE STUDY

In this Section, we showcase the usability of our profiling
approach and analysis toolchain. We analyze the execution of

samplesort, a popular sorting algorithm for parallel systems,
and we also compare the performance of different MPI library
versions. Experiments were conducted on TSUBAME2.5, which
utilizes two independent IB subnets and each compute node
has a link to each subnet.

A. Visualizing Traffic Patterns and Contention in Samplesort

Samplesort, as described in [19], is a sorting algorithm for
distributed memory environments. The main idea behind the
algorithm is to find a set splitters to partition the input keys into
p buckets corresponding to p processes in such a way that every
element in the i

th bucket is less than or equal to each of the
elements in the (i+ 1)th bucket. Because splitters are selected
randomly, the resulting bucket sizes may be uneven. This could
result in communication and computation imbalances when
keys are shuffled and sorted, respectively.

For our experiment, we used the samplesort code presented
in [19] 1. We executed samplesort with 128 MPI processes,
using a 1:1 process-to-node mapping. Each process started
with 1 GB of unsorted integers, randomly generated with a
uniform distribution. The same random number seed was
used in all cases. Fig. 6 shows a typlical process-centric
visualization of samplesort’s main communication routines over
128 nodes using Paraver. We are unable to extract any network
performance insights from this and other similar visualizations
that are generated using PMPI-based instrumentation tools.

1) Performance Analysis using our ibprof Profiler and
our Boxfish Module: We profiled an execution of samplesort
using ibprof and visualized the network traffic in our
Boxfish fat tree module. Segments of the code were manually
instrumented to enable the identification of the code block
where the all-to-all key exchange is conducted in order to
perform a meaningful analysis. Fig. 7 shows the network traffic
generated by the main communication routines of samplesort.
This section of the profile reflects the traffic generated by the
segment of the program highlighted in Fig. 6.

The red links that are visible in area C of Fig. 7 represent
links that were carrying the most traffic during the commu-
nication block of the code. By exploring the visualization

1Source code: http://users.ices.utexas.edu/˜hari/talks/hyksort.html

(avg:	
 11.6)	

(avg:	
 3.4)	

21 25 210 215 220 223

0

20

40

60

80

100

Message Size (bytes)

O
ve

rh
ea

d
(%

)

bcast
reduce
ping-pong

21 25 210 215 220 223

�2

0

2

4

6

8

10

Message Size (bytes)

alltoall scatter
gather allgather
allreduce

(a) Intel MPI Bencharmark

ft is cg mg bt sp lu

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

-32ms

56ms

0.3ms

-39ms

14ms
47ms 58ms

Kernels & Psuedo Apps

kernel

pseudo app

(b) NAS Parallel Benchmarks

Fig. 5. Runtime overhead of communication profiling. Subfigure (5a) shows the percentage increase in communication latency for the various IMB benchmarks.
These results are separated into two charts for increased readability. Subfigure (5b) shows the increase in runtime of NPB kernels and pseudo applications. The
height of each bar represents the overhead as a percentage of the communication runtime and the bars annotation states the actual change in communication
runtime.

2) Increase in Communication Latency: Figure 5 shows the
results of our experiments. These graphs represent the increase
in communication latency caused by our profiler and does not re-
flect the time for dumping profiles. Results were averaged across
all 100 pairs of runs with standard errors <1% in all cases. The
average overhead was 11.6%, 3.4%, and 1.3% for MPI_Bcast,
MPI_Reduce, and MPI_Scatter, respectively, over all
message sizes while other IMB benchmarks averaged below
1% overhead. Similarly, all NPB benchmarks averaged below
1%, with the communication-bound FT benchmark reporting
the highest value of 0.46%.

The averaged runtime differences were in the order of
microseconds for the IMB benchmarks and milliseconds for
the NPB benchmark. Because such small differences could
be attributed to jitters in the system, we ran similar exper-
iments at different times over several days for verification.
Similar trends were observed in the results with some runs
occasionally reporting negative overheads and all overheads
remaining negligible except for spikes in the MPI_Bcast
and MPI_Reduce results for the message sizes shown. We
confirmed that the spike in the MPI_Bcast can be attributed
to Open MPI switching from the send/receive semantics to
RDMA pipeline protocol when the message size surpasses
256 KB. We ran a set of MPI_Bcast trials with the RDMA
pipeline size limit changed from 256 KB to 1 MB and the
pipeline send length changed from 1 MB to 4 MB. As expected,
we observed additional spikes for messages between 1 MB and
4 MB in size. Further research is being planned to ascertain
the cause of this phenomenon.

3) Increase in Application Runtime: The total increase in
application runtime when ibprof is used is equal to the
increase in communication latency plus the time taken to write
profiles. On our system, the time taken for a complete profile
dump was less than 1 seconds, irrespective of the application
or communication pattern. This time is dependent on the IO
subsystem’s performance, which is beyond the scope of this
work.

VI. CASE STUDY

In this Section, we showcase the usability of our profiling
approach and analysis toolchain. We analyze the execution of

samplesort, a popular sorting algorithm for parallel systems,
and we also compare the performance of different MPI library
versions. Experiments were conducted on TSUBAME2.5, which
utilizes two independent IB subnets and each compute node
has a link to each subnet.

A. Visualizing Traffic Patterns and Contention in Samplesort

Samplesort, as described in [19], is a sorting algorithm for
distributed memory environments. The main idea behind the
algorithm is to find a set splitters to partition the input keys into
p buckets corresponding to p processes in such a way that every
element in the i

th bucket is less than or equal to each of the
elements in the (i+ 1)th bucket. Because splitters are selected
randomly, the resulting bucket sizes may be uneven. This could
result in communication and computation imbalances when
keys are shuffled and sorted, respectively.

For our experiment, we used the samplesort code presented
in [19] 1. We executed samplesort with 128 MPI processes,
using a 1:1 process-to-node mapping. Each process started
with 1 GB of unsorted integers, randomly generated with a
uniform distribution. The same random number seed was
used in all cases. Fig. 6 shows a typlical process-centric
visualization of samplesort’s main communication routines over
128 nodes using Paraver. We are unable to extract any network
performance insights from this and other similar visualizations
that are generated using PMPI-based instrumentation tools.

1) Performance Analysis using our ibprof Profiler and
our Boxfish Module: We profiled an execution of samplesort
using ibprof and visualized the network traffic in our
Boxfish fat tree module. Segments of the code were manually
instrumented to enable the identification of the code block
where the all-to-all key exchange is conducted in order to
perform a meaningful analysis. Fig. 7 shows the network traffic
generated by the main communication routines of samplesort.
This section of the profile reflects the traffic generated by the
segment of the program highlighted in Fig. 6.

The red links that are visible in area C of Fig. 7 represent
links that were carrying the most traffic during the commu-
nication block of the code. By exploring the visualization

1Source code: http://users.ices.utexas.edu/˜hari/talks/hyksort.html

•  All	
 NPB	
 apps	
 averaged	
 <	
 1%	
 	

•  Peak	
 overhead	
 occurred	
 with	

MPI_Bcast	
 when	
 Open	
 MPI	

switched	
 from	
 send/recv	
 to	
 RDMA	

•  All	
 other	
 collec'ves	
 averaged	
 <	
 5%	

O
ve

rh
ea

d
(%

)
O

ve
rh

ea
d

(%
)

Intel	
 MPI	
 Benchmarks	
 NAS	
 Parallel	
 Benchmarks	

Process-­‐centric	
 Visualiza'ons	
 vs.	
 Boxfish	

Fat	
 Tree	
 Visualiza'on	

22	

Paraver	

Does	
 not	
 show	
 network	

traffic	
 hotspots	

Boxfish	

Capable	
 of	
 highligh'ng	
 network	

hotspots	
 and	
 traffic	
 pazerns	

Samplesort	
 on	
 128	
 nodes	
 of	
 TSUBAME2.5	

vs.	

Visualizing	
 the	
 Traffic	
 Pazerns	
 of	
 Different	

Open	
 MPI	
 Library	
 version	

23	

v1.82	

v1.65	

Open	
 MPI	
 v1.65	
 balances	

traffic	
 over	
 both	
 subnets	

ofTSUBAME2.5	
 with	
 the	

default	
 configura'on	

Open	
 MPI	
 v1.82	
 uses	
 a	
 single	

subnet	
 per	
 opera'on	
 with	
 the	

default	
 configura'ons	
 on	

TSUBAME2.5	

Publica'ons	

Poster	
 (Prior	
 to	
 internship	
 but	
 using	
 LLNL’s	
 work):	

Kevin	
 A.	
 Brown,	
 Jens	
 Domke,	
 and	
 Satoshi	
 Matsuoka.	
 “Tracing	

Data	
 Movements	
 within	
 MPI	
 Collec>ves”.	
 In	
 Proceedings	
 of	

the	
 21st	
 European	
 MPI	
 Users'	
 Group	
 Mee'ng	
 (EuroMPI/ASIA	

'14).	

	

Paper:	

Brown,	
 K.A.;	
 Domke,	
 J.;	
 Matsuoka,	
 S.,	
 "Hardware-­‐Centric	

Analysis	
 of	
 Network	
 Performance	
 for	
 MPI	
 Applica>ons”.	
 In	

2015	
 IEEE	
 21st	
 Interna'onal	
 Conference	
 on	
 Parallel	
 and	

Distributed	
 Systems	
 (ICPADS)	

Challenges to model a tree-­‐based irregular
applica8ons with Aspen

Keisuke	
 Fukuda	
 (Ph.D	
 Student)	

Research	
 Internship	
 @ORNL	
 	

•  2013	
 Sep-­‐Nov	

•  2014	
 Oct-­‐Nov	

•  Now	
 long-­‐term	
 intern	
 at	
 AICS	
 2015	
 Oct-­‐2016	
 Sep	

Challenges in modeling irregular applica8ons	

•  Performance	
 modeling	
 of	
 applica'on	
 is	
 used	
 to:	

•  Run'me	
 (power,	
 memory)	
 es'ma'on	

•  Hardware/machine	
 design	

•  Conven'onal,	
 ad-­‐hoc	
 mathema'cal	
 modeling	
 is	
 not	
 suitable	
 if	
 irregular	
 data	

structure	
 (e.g.	
 tree)	
 and	
 control	
 flows	
 affect	
 the	
 performance	

•  How	
 to	
 model	
 such	
 applica'ons?	

•  We	
 focus	
 on	
 the	
 Fast	
 Mul'pole	
 Method	

	

0	

1	

2	

3	

4	

0	
 200	
 400	
 600	

Ti
m
e	

[s
]	

Ncrit	

La~ce	

Plummer	

(this figure will be shown and�
described again)�

Each plot point represents�
a particular shape of tree�

Performance variation�
caused by “shape” of a tree�
for a fixed number of particles�

Examples of tree shapes�

26	

• Applied	
 Aspen	
 modeling	
 language	
 to	
 FMM	

•  Run'me	
 es'ma'on	
 for	
 la~ce,	
 sphere,	
 plummer	
 distribu'on,	

Ncrit	
 =	
 16〜512	

•  Es'ma'on	
 errror	
 was	
 7-­‐13%	
 error	
 in	
 avg.	

• Room	
 for	
 op'miza'on	
 for	
 find-­‐grained	
 kernels	
 and	
 in	

deriving	
 constants	

• Aspen	
 requires	
 large	
 'me	
 and	
 memory	
 to	
 evaluate	
 the	

models	

27	

Whole-­‐app model of ExaFMM	

28	

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

16
"

32
"

48
"

64
"

80
"

96
"

11
2"

12
8"

14
4"

16
0"

17
6"

19
2"

20
8"

22
4"

24
0"

25
6"

27
2"

28
8"

30
4"

32
0"

33
6"

35
2"

36
8"

38
4"

40
0"

41
6"

43
2"

44
8"

46
4"

48
0"

49
6"

51
2"

Ti
m
e%
[s
]�

Ncrit�

Aspen%Model%vs.%Actual%run8me%
La:ce%distribu8on%%50,000%par8cles�

Model"

Actual"

Error: avg 7.7%, max 33.2%, min 3.7%�

Whole-­‐app model of ExaFMM	

29	

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

16
"

32
"

48
"

64
"

80
"

96
"
11
2"

12
8"

14
4"

16
0"

17
6"

19
2"

20
8"

22
4"

24
0"

25
6"

27
2"

28
8"

30
4"

32
0"

33
6"

35
2"

36
8"

38
4"

40
0"

41
6"

43
2"

44
8"

46
4"

48
0"

49
6"

51
2"

Ti
m
e[
s]
�

Ncrit�

Aspen/Model/vs./Actual/run8me"
Sphere/distribu8on//50,000/par8cles/

�

Model"

Actual"

Error: avg 12.8%, max 26.9%, min 4.0%�

Dynamic Graphs (temporal graph)
•  the structure of a graph

changes dynamically over time
•  many real-world graphs are

classified into dynamic graph

•  Most studies for large graphs have not focused on a dynamic
graph data structure, but rather a static one, such as Graph 500

•  Even with the large memory capacities of HPC systems, many
graph applications require additional out-of-core memory
(this part is still at an early stage)

Sparse Large Scale-free
•  social network, genome

analysis, WWW, etc.
•  e.g., Facebook manages

1.39 billion active users
as of 2014, with more
than 400 billion edges

Distributed Large-Scale Dynamic Graph Data Store
Keita Iwabuchi1, 2, Scott Sallinen3, Roger Pearce2,

Brian Van Essen2, Maya Gokhale2, Satoshi Matsuoka1
1.  Tokyo Institute of Technology (Tokyo Tech)

2. Lawrence Livermore National Laboratory (LLNL)
3. University of British Columbia

Source:	
 Jakob	
 Enemark	
 and	
 Kim	
 Sneppen,	
 “Gene	
 duplica'on	
 models	
 for	
 directed	
 networks	

with	
 limits	
 on	
 growth”,	
 Journal	
 of	
 Sta's'cal	
 Mechanics:	
 Theory	
 and	
 Experiment	
 2007	

Controller /
Partitioner

Comp.
Node

Comp.
Node

Distributed Dynamic Graph Data
Store

share.sandia.gov

Comp.
Node

Graph Application

Comp.
Node

Comp.
Node

Developing a distributed dynamic graph store for data intensive
supercomputers equipped with locally attached NVRAM

Streaming	
 edges	
 	

Degree Aware Dynamic Graph Data Store
(DegAwareRHH)

Robin Hood Hashing1

[1] P. Celis, “Robin hood hashing,” Ph.D. dissertation, 1986. Designed to
maintain a small
average probe
distance

w1

w5 v1
p1

v3
p3

w2

v4
p4

w3

w6

v2
p2

v1 p1

v2 p2

v3 p3

v4 p4

Vertex-table

v2 w1 v3 w2

v4 w3

v1 w4 v3 w5

Edge-list

v: vertex
p: vertex property data
w: edge weight

Vertex-table : tree, hash table
Edge-list : vector, linked-list

v1 v4
p1 p4

v1 v3
w5 w6

{v2,v4
}

{v3,v4
}

p2 p3
w3 w4

w4

Low-­‐degree	

table	

Mid-­‐high	
 degree	
 table	

DegAwareRHH
Degree Aware Graph Data Structure

Each	
 table	
 is	

composed	
 of	
 Robin	

Hood	
 Hashing	

Extend	
 DegAwareRHH	
 for	
 distributed-­‐memory	
 using	
 a	
 async.	

MPI	
 communica'on	
 framework[2][3]	

•  Degree	
 aware	
 data	
 structures,	
 where	
 low-­‐degree	
 ver'ces	
 are	

compactly	
 represented	

•  Use	
 Robin	
 Hood	
 Hashing[1]	
 because	
 of	
 its	
 locality	
 proper'es	
 to	

minimize	
 the	
 number	
 of	
 accesses	
 to	
 NVRAM,	
 reducing	
 page	
 misses.	
 	

v2 v3
w1 w2

Vertex	
 ID	

Vertex	
 property	

Edge	
 weight	

[2] R. Pearce, et al, “Scaling techniques for massive scale-free graphs in distributed (external) memory,”
IPDPS’ 13
[3] R. Pearce, et al, “Faster parallel traversal of scale free graphs at extreme scale with vertex delegates,
” SC’ 14

RMAT 25 graph: #vertices 32M, #edges 1B

#nodes	
 (24	
 processes	
 per	
 node)	

M
ill
io
n	

Re

qu
es
ts
/s
ec
.	

•  STINGER: a state-of-the-art shared-memory dynamic graph
processing framework developing at Georgia Tech

•  Baseline: a baseline model using Boost.Interprocess
•  DegAwareRHH: our proposed dynamic graph store

Dynamic	
 Large-­‐Scale	
 Graph	
 Construc'on	
 (on-­‐memory)	

Edge	
 inser'on	
 and	
 dele'on	

(single	
 node,	
 24	
 threads/processes)	

total	
 #edges:	
 1	
 billion	

Edge	
 inser'on	

total	
 #edges:	
 128	
 billion	

Be
z
er

	

Bi
lli
on

	
 R
eq

ue
st
s/
se
c.

	

16x than
Baseline

121x than
STINGER

over 2 billion
insertions/

sec.
overperform
s Baseline
by 30.69 %

Due	
 to	
 a	
 skewness	
 of	
 the	
 data	
 set	
 (RMAT	

graph),	
 DegAwareRHH	
 overperforms	
 the	
 both	

implementa'ons	
 significantly	
 	

2016/2/3

Publica'on	
 list	

•  Keita	
 Iwabuchi,	
 Roger	
 A.	
 Pearce,	
 Brian	
 Van	
 Essen,	
 Maya	
 Gokhale,	
 Satoshi	
 Matsuoka,	

“Design	
 of	
 a	
 NVRAM	
 Specialized	
 Degree	
 Aware	
 Dynamic	
 Graph	
 Data	
 Structure”,	
 SC	

2015	
 Regular,	
 Electronic,	
 and	
 Educa'onal	
 Poster,	
 Interna'onal	
 Conference	
 for	
 High	

Performance	
 Compu'ng,	
 Networking,	
 Storage	
 and	
 Analysis	
 2015	
 (SC	
 ’15),	
 Nov.	
 2015	

•  Keita	
 Iwabuchi,	
 Roger	
 A.	
 Pearce,	
 Brian	
 Van	
 Essen,	
 Maya	
 Gokhale,	
 Satoshi	
 Matsuoka,	

“Design	
 of	
 a	
 NVRAM	
 Specialized	
 Degree	
 Aware	
 Dynamic	
 Graph	
 Data	
 Structure”,	
 7th	

Annual	
 Non-­‐Vola'le	
 Memories	
 Workshop	
 2016,	
 Mar.	
 2016	

An	
 OpenACC	
 Extension	
 for	
 Data	
 Layout	

Transforma'on	
 w/ORNL	

	

	
 	

Tetsuya	
 Hoshino(Ph.D	
 Student)	

Research	
 Internship	
 @ORNL	
 2014	
 Sep-­‐Nov	

	

Now:	
 Assistant	
 Professor	
 @	
 Supercompu'ng	
 Center,	

The	
 University	
 of	
 Tokyo	

	

	

Why	
 the	
 extension	
 is	
 needed?	

•  An	
 OpenACC	
 program	
 can	
 be	

executed	
 on	
 any	
 devices	

–  mul'-­‐core	
 CPU,	
 Xeon	
 Phi,	
 GPUs	

•  OpenACC	
 target	
 devices	
 have	

different	
 performance	

characteris'cs	
 especially	
 about	

memory	
 access	

–  	
 ex.	
 SoA	
 and	
 AoS	

•  Data	
 layout	
 of	
 real-­‐world	

applica'ons	
 is	
 complicated	
 and	

is	
 shared	
 in	
 the	
 whole	
 program	

–  Auto-­‐tuning	
 is	
 required	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

Original	
 AoS	
 SoA	

El
ap

se
d	

:m

e/
1	

:m

e	

st
ep

	
 [s
ec
]	

Viscosity	
 and	
 Convec:on	
 phases	

Intel	
 Xeon	

(6	
 core)	

K20X	
 GPU	

The	
 graph	
 shows	
 the	
 result	
 of	
 manual	
 data	
 layout	

transforma'on	
 for	
 the	
 viscosity	
 and	
 convec'on	

phases	
 of	
 a	
 real-­‐world	
 CFD	
 applica'on	
 UPACS	
 	
 	

(Hoshino	
 et	
 al.	
 “CUDA	
 vs	
 OpenACC:	
 Performance	
 Case	
 Studies	
 with	

Kernel	
 Benchmarks	
 and	
 a	
 Memory-­‐Bound	
 CFD	
 Applica'on”,	
 CCGrid13)	

 	

An	
 OpenACC	
 extension	

#pragma	
 acc	
 transform	

•  Specifica'on	

	

•  Clause	
 list	

–  transpose(
 array_name::transpose_rule	
)	

•  for	
 mul'-­‐dimensional	
 array	
 	

•  A[Z][Y][X][3]	
 →	
 A’[3][Z][Y][X]	
 	
 (transpose	
 rule	
 ::	
 [4,1,2,3])	

–  redim(
 array_name::redim_rule	
)	

•  for	
 1	
 dimensional	
 array	
 	

•  B[Z*Y*X*3]	
 →	
 B’[Z][Y][X][3]	
 →	
 B’’[3][Z][Y][X]	
 (by	
 transpose	
 clause)	

–  expand(
 derived_type_array_name	
)	

•  for	
 array	
 of	
 structures	

•  C[Z][Y][X].c[3]	
 →	
 C’[Z][Y][X][3]	
 →	
 C’’[3][Z][Y][X]	
 (by	
 transpose	
 clause)	

37	

#pragma	
 acc	
 transform	
 [clause	
 [[,]	
 clause]	
 …]	
 new-­‐line	

	
 	
 	
 	
 	
 	
 	
 	
 	
 structured	
 block	

Collaborate	
 with	
 ORNL	

•  Implement	
 the	
 direc've	
 top	
 on	
 OpenARC	
 that	
 is	
 an	
 Open-­‐source	

OpenACC	
 compiler	
 developed	
 by	
 ORNL	
 	

–  Source-­‐to-­‐Source	
 translator	

•  Input	
 :	
 Extended	
 OpenACC	
 program	
 	

•  Output	
 :	
 OpenACC	
 program	

–  It	
 is	
 on	
 going	
 work	

Our	
 Translator	

	

	

	

	

	

	

	

Extended	

OpenACC	

.c	
 input	

OpenARC	

generates	

AST	

analyze	

direc'ves	

transform	

structures	
 output	

OpenACC	

.c	

Evaluate	
 with	
 Himeno	
 benchmark	
 	

(27-­‐point	
 stencil	
 program)	

•  Apply	
 transpose	
 to	

coefficient	
 arrays	
 of	

Himeno	
 benchmark	

–  But	
 the	
 transforma'on	
 is	

applied	
 by	
 hands	

–  Transformed	
 program	
 is	

same	
 as	
 the	
 output	
 program	

that	
 OpenARC	
 should	
 output	

•  Performance	
 evalua'on	

–  CPU	
 :	
 Original	
 is	
 the	
 best	

–  GPU	
 :	
 24%	
 up	

–  MIC	
 :	
 more	
 than	
 60%	
 down	

•  Translator	
 change	
 the	

coefficient	
 mul'dimensional	

array	
 to	
 1-­‐dimensional	
 array,	

it	
 disturbs	
 prefetching	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

Original	
 A[Z][Y][X][4]	

([4]	
 is	

innermost)	

A[Z][Y][4][X]	
 A[Z][4][Y][X]	
 A[4][Z][Y][X]	

([4]	
 is	

outermost)	

Re
la
:v

e	

pe

rf
or
m
an

ce
	
 (O

rig
in
al
	
 =
=	

1)

	

Intel	
 Xeon	
 (12cores)	

Intel	
 Xeon	
 Phi	

NVIDIA	
 K20X	
 GPU	

Lessons Learned	

•  Sending	
 actual	
 Ph.D.	
 students	
 to	
 DoE	
 labs	
 extremely	

produc've	
 for	
 both	
 sides	
 for	
 tangible	
 collabra'on	

•  Tokyo	
 Tech	
 Ph.D.	
 students	
 are	
 extremely	
 good	
 and	
 well	

trained	
 by	
 global	
 standards	
 –	
 they	
 usually	
 survive	
 the	

filtering	
 of	
 summer	
 interns	
 and	
 produce	
 tangible	
 results	

• Many	
 students	
 end	
 up	
 being	
 hired	
 by	
 DoE	
 labs.	
 Others	

go	
 to	
 Japanese	
 univ.	
 &	
 labs,	
 etc.	
 =>	
 great	
 talent	
 pool	

•  Some	
 administra've	
 obstacles,	
 esp.	
 travel	
 and	
 funding	

from	
 both	
 ends	
 –	
 need	
 more	
 flexibility	
 in	
 purpose,	

airlines,	
 gaps	
 in	
 travel	
 i'nerary,	
 etc.	

4
1	

Tokyo	
 Tech	
 Research	
 on	
 Big	
 Data	
 Convergence	

JST-­‐CREST	
 “Extreme	
 Big	
 Data”	
 Project	
 (2013-­‐2018)	

Supercomputers
Compute&Batch-Oriented

More fragile

Cloud　IDC
Very low BW & Efficiency
Highly available, resilient

	

Convergent Architecture (Phases 1~4)
Large Capacity NVM, High-Bisection NW

PCB	

TSV Interposer	

High Powered
Main CPU	

Low
Power
CPU	

DRAM	

DRAM	

DRAM	

NVM/
Flash	

NVM/
Flash	

NVM/
Flash	

Low
Power
CPU	

DRAM	

DRAM	

DRAM	

NVM/
Flash	

NVM/
Flash	

NVM/
Flash	

2Tbps HBM
4~6HBM Channels
1.5TB/s DRAM &
NVM BW

30PB/s I/O BW Possible
1 Yottabyte / Year

EBD System Software
incl. EBD Object System	

In
tr
o
d
u
ct
io
n

P
ro
b
le
m

D
om

ai
n

In
m
os
t
liv
in
g
or
ga
ni
sm

s
ge
ne
ti
c
in
st
ru
ct
io
ns

us
ed

in
th
ei
r
de
ve
lo
pm

en
t
ar
e
st
or
ed

in
th
e
lo
ng

p
ol
ym

er
ic

m
ol
ec
ul
e
ca
lle
d
D
N
A
.

D
N
A
co
ns
is
ts

of
tw
o
lo
ng

p
ol
ym

er
s
of

si
m
pl
e
un

it
s

ca
lle
d
nu

cl
eo
ti
de
s.

T
he

fo
ur

ba
se
s
fo
un

d
in

D
N
A
ar
e
ad
en
in
e
(a
bb
re
vi
at
ed

A
),
cy
to
si
ne

(C
),
gu
an
in
e
(G

)
an
d
th
ym

in
e
(T

).

A
le
k
sa
n
d
r
D
ro
zd

,
N
a
oy
a
M
ar
u
ya
m
a
,
S
a
to
sh
i
M
a
ts
u
o
ka

(T
IT

E
C
H
)

A
M
u
lt
i
G
P
U

R
ea

d
A
lig

n
m
en

t
A
lg
or
it
h
m

w
it
h
M
o
d
el
-b
a
se
d
P
er
fo
rm

a
n
ce

O
p
ti
m
iz
a
ti
o
n

N
o
ve

m
b
er

1
,
2
0
1
1

5
/
5
4

Large Scale
Metagenomics	

Massive Sensors and
Data Assimilation in
Weather Prediction	

Ultra Large Scale
Graphs and Social
Infrastructures	

Exascale Big Data HPC 	

Co-Design	

Future Extreme Big Data Scientific Apps	

Graph	
 Store	

EBD	
 Bag	

Co-Design	
 13/06/06 22:36日本地図

1/1 ページfile:///Users/shirahata/Pictures/日本地図.svg

1000km

K
V
S	

K
V
S	

K
V
S	

EBD	
 KVS	

Cartesian	
 Plane	

Co-Design	

Given	
 a	
 top-­‐class	

supercomputer,	

how	
 fast	
 can	
 we	

accelerate	
 next	

genera>on	
 big	

data	
 c.f.	
 Clouds?	

World-­‐leading	

results:	

-­‐  #1	
 Graph	
 500	

2014,	
 2015	

-­‐  #1	
 Green	
 Graph	

500	

(TsubameKFC)	

-­‐  GPU	
 sort	
 scalable	

to	
 ~30Petabyte/s	

on	
 future	
 SCs	

-­‐  OSSs	
 in	
 dev.	

The	
 Graph500	
 –	
 June	
 2014	
 and	
 June/Nov	
 2015	
 	

	
 K	
 Computer	
 #1	
 Tokyo	
 Tech[EBD	
 CREST]	
 Univ.	
 Kyushu	

[Fujisawa	
 Graph	
 CREST],	
 Riken	
 AICS,	
 Fujitsu

List Rank GTEPS Implementation

November 2013 4 5524.12 Top-down only

June 2014 1 17977.05 Efficient hybrid

November 2014 2 Efficient hybrid

June/Nov 2015 1 38621.4 Hybrid + Node
Compression

*Problem size is
weak scaling

“Brain-class” graph

88,000 nodes, 700,000
CPU Cores
1.6 Petabyte mem
20GB/s Tofu NW

≫

LLNL-IBM Sequoia
1.6 million CPUs
1.6 Petabyte mem

0

500

1000

1500

64 nodes
(Scale 30)

65536
nodes

(Scale 40)

El
ap

se
d

Ti
m

e
(m

s)

Communic
73% total exec

time wait in
communication

4
3	

TSUBAME3.0	

2006 TSUBAME1.0
80 Teraflops, #1 Asia #7 World
“Everybody’s Supercomputer”	

2010 TSUBAME2.0
2.4 Petaflops #4 World

“Greenest Production SC”	

2013
TSUBAME2.5

upgrade
5.7PF DFP /
17.1PF SFP
20% power
reduction	

2013 TSUBAME-KFC
#1 Green 500	

2017 TSUBAME3.0
15~20PF(DFP) ~4PB/s Mem BW
9~10GFlops/W power efficiency
Big Data & Cloud Convergence

Large Scale Simulation
Big Data Analytics

Industrial Apps	
2011	
 ACM	
 Gordon	
 Bell	
 Prize	

2017	
 Q1	
 TSUBAME3.0+2.5	
 Towards	
 Exa	
 &	
 Big	
 Data	

	

1.   “Everybody’s	
 Supercomputer”	
 –	
 High	
 Performance	
 (15~20	
 Petaflops,	
 ~4PB/s	
 Mem,	
 ~1Pbit/s	

NW),	
 innova:ve	
 high	
 cost/performance	
 packaging	
 &	
 design,	
 in	
 mere	
 100m2…	

2.   “Extreme	
 Green”	
 –	
 9~10GFlops/W	
 power-­‐efficient	
 architecture,	
 system-­‐wide	
 power	
 control,	

advanced	
 cooling,	
 future	
 energy	
 reservoir	
 load	
 leveling	
 &	
 energy	
 recovery	

3.   “Big	
 Data	
 Convergence”	
 –	
 Extreme	
 high	
 BW	
 &capacity,	
 deep	
 memory	

	
 hierarchy,	
 extreme	
 I/O	
 accelera:on,	
 Big	
 Data	
 SW	
 Stack	
 	

for	
 machine	
 learning	
 /DNN,	
 graph	
 processing,	
 …	

4.   “Cloud	
 SC”	
 –	
 dynamic	
 deployment,	
 container-­‐based	
 	

node	
 co-­‐loca:on	
 &	
 dynamic	
 configura:on,	
 resource	

elas:city,	
 assimila:on	
 of	
 public	
 clouds…	

5.   “Transparency”	
 -­‐	
 full	
 monitoring	
 &	
 	

user	
 visibility	
 of	
 machine	

&	
 job	
 state,	
 	

accountability	
 	

via	
 reproducibility	

43	

Big Data and HPC Convergent Infrastructure 
=> “Big Data & Supercomputing Convergent Center” （Tokyo Tech GSIC）	

•  “Big Data” currently processed managed by domain laboratories => No longer scalable
•  HPCI HPC Center => Converged HPC and Big Data Science Center
•  People convergence: domain scientists + data scientists + CS/Infrastructure => Big data science center
•  Data services including large data handling, big data structures e.g. graphs, ML/DNN/AI services…	

2013 TSUBAME2.5
Upgrade

5.7Petaflops 17PF DNN	

2017Q1 TSUBAME3.0+2.5 upgrade
Green&Big Data 100+PF DNN

HPCI Leading Machine
Ultra-fast memory

network, I/O
	

Mid-tier
Parallel FS

Storage

Archival
Long-Term

Object Store

Big	
 Data	
 Science	

Applica'ons	

In
tr
o
d
u
ct
io
n

P
ro
b
le
m

D
om

ai
n

In
m
os
t
liv
in
g
or
ga
ni
sm

s
ge
ne
ti
c
in
st
ru
ct
io
ns

us
ed

in
th
ei
r
de
ve
lo
pm

en
t
ar
e
st
or
ed

in
th
e
lo
ng

p
ol
ym

er
ic

m
ol
ec
ul
e
ca
lle
d
D
N
A
.

D
N
A
co
ns
is
ts

of
tw
o
lo
ng

p
ol
ym

er
s
of

si
m
pl
e
un

it
s

ca
lle
d
nu

cl
eo
ti
de
s.

T
he

fo
ur

ba
se
s
fo
un

d
in

D
N
A
ar
e
ad
en
in
e
(a
bb
re
vi
at
ed

A
),
cy
to
si
ne

(C
),
gu
an
in
e
(G

)
an
d
th
ym

in
e
(T

).

A
le
k
sa
n
d
r
D
ro
zd

,
N
a
oy
a
M
ar
u
ya
m
a
,
S
a
to
sh
i
M
a
ts
u
o
ka

(T
IT

E
C
H
)

A
M
u
lt
i
G
P
U

R
ea

d
A
lig

n
m
en

t
A
lg
or
it
h
m

w
it
h
M
o
d
el
-b
a
se
d
P
er
fo
rm

a
n
ce

O
p
ti
m
iz
a
ti
o
n

N
o
ve

m
b
er

1
,
2
0
1
1

5
/
5
4

Na:onal	
 Labs	
 	

With	
 Data	

Present	
 old	
 style	
 data	
 science	

Domain	
 labs	
 segregated	
 data	
 facili'es	

No	
 mutual	
 collabora'ons	

Inefficient,	
 not	
 scalable	
 with	

Not	
 enough	
 data	
 scien'sts	

Convergence	
 of	

top-­‐>er	
 HPC	

and	
 Big	
 Data	

Infrastructure	

Data	

Management	

Big	
 Data	
 Storage	

Deep	
 Learning	

SW	
 Infrastructure	

	

Virtual	
 Mul>-­‐Ins>tu>onal	
 Data	
 Science	
 =>	
 People	
 Convergence	

Goal 100 Petabytes

100Gbps	
 L2	

Connec'on	
 to	

commercial	
 clouds	

Main	
 reason:	
 We	

have	
 shared	

resource	
 HPC	

centers	
 but	
 no	

“Data	
 Center”	
 per	
 se	

New collabora8ons under considera8on	

•  Fault	
 tolerance	
 towards	
 exascale	

•  Modeling	
 &	
 analyzing	
 sor	
 errors	
 with	
 “realis'c”	
 	

machine	
 fault	
 models	
 (Kobayashi)	

•  General	
 system-­‐level	
 GPU	
 checkpoin'ng	
 (Suzuki)	

• Big	
 Data	
 /	
 IoT	
 /	
 Machine	
 Learning-­‐AI	
 &	
 HPC	
 Convergence	

•  Modeling	
 deep	
 learning	
 algorithms	
 performance	
 (Ooyama)	

•  Counterpart	
 to	
 Tokyo	
 Tech	
 Extreme	
 Big	
 Data	
 (EBD)	
 Project	
 w/DENSO	

• Post-­‐Moore	
 compu'ng	

•  Programming	
 /	
 Performance	
 modeling	
 future	
 FPGAs	
 (also	
 w/Riken	

AICS	
 Naoya	
 Maruyama	
 (Hamid)	

•  FLOPS	
 to	
 BYTES	
 –	
 from	
 compute	
 intensive	
 to	
 bandwidth/capacity	

intensive	
 compu'ng	
 (w/Kengo	
 Nakajima,	
 Toshio	
 Endo	
 et.	
 al.)	

• ADAC	
 (Accelerated	
 Data	
 Analy'cs	
 and	
 Compu'ng)	
 Ins'tute	
 –	

ORNL	
 –	
 ETH/CSCS	
 –	
 Tokyo	
 Tech	
 GSIC	

To	
 be	

presented	
 @	

DoE/MEXT	

workshop)	

