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Successful  Model  of  DoE  Lab  /  Tokyo  
Tech  Collabora8on	

•  1.	
  Ini'al	
  agreement	
  on	
  collabora'on	
  area	
  w/DoE	
  group	
  

•  Funding	
  on	
  both	
  sides	
  not	
  mandated	
  but	
  desirable	
  

•  2.	
  Send	
  a	
  Ph.D.	
  guinea	
  pig	
  student	
  for	
  short-­‐term	
  (2mo)	
  
exploratory	
  hard	
  labor	
  internship	
  

•  3.	
  Usually	
  Tokyo	
  Tech	
  student	
  performs	
  extremely	
  well	
  =>	
  
tangible	
  collabora've	
  research	
  advance	
  

•  4.	
  Student	
  asked	
  back	
  for	
  longer-­‐term	
  (6	
  mo	
  or	
  greater)	
  
more	
  hard	
  labor	
  internship	
  

•  5.	
  Papers	
  published,	
  OSS	
  deliverables,	
  awards,	
  …	
  
•  6.	
  Student	
  obtains	
  Ph.D.	
  =>	
  hired	
  as	
  postdoc	
  at	
  DoE	
  Lab	
  
(much	
  higher	
  salary	
  than	
  being	
  hired	
  in	
  Japan!)	
  



Tokyo  Tech  Collabora8on  Topics  with  
DoE  Labs  in  the  recent  years	

•  Exascale	
  Resiliece	
  (Leonardo	
  Bau'sta-­‐Gomez@ANL,	
  
Kento	
  Sato@LLNL)	
  

• Performance	
  of	
  OpenMP-­‐MPI	
  Hybrid	
  Programming	
  on	
  
Many-­‐Core	
  (Abdelhalim	
  Amer@ANL)	
  

• Performance	
  Visualiza'on	
  (Kevin	
  Brown@LLNL)	
  
• Performance	
  Modeling	
  of	
  Tee	
  Code	
  with	
  ASPEN	
  
(Keisuke	
  Fukuda@ORNL)	
  

•  Large-­‐Scale	
  Graph	
  Store	
  in	
  NVM	
  	
  (Keita	
  Iwabuchi@LLNL)	
  
• OpenACC	
  Data	
  Layout	
  Extensions	
  (Tetsuya	
  
Hoshino@ORNL)	
  

• More	
  to	
  come…	
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[SC11,  EuroPar12  &  Cluster12  (Leonardo  Bautista-­‐‑Gomez  et  al.)]	

Internship  at  ANL  =>  PostDoc  at  ANL	
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Ø 	
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  by	
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  SSD	
  
	
  
Ø 	
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  encoding	
  
clusters	
  that	
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  the	
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FTI (Multilevel checkpointing) 

λ FTI is a multilevel checkpointing library with 4 levels of reliability. It has over 8000 
lines of c/c++ (with Fortran bindings) under GPL2.1. 
λ Download at http://www.github.com/leobago/fti   and you can access the 
documentation at http://leobago.github.io/fti 
λ FTI discovers the location of the processes in the hardware and creates topology-
aware virtual rings to enhance reliability. 
λ FTI can protect dynamic datasets, where the size, pointers or structure of the dataset 
changes during the runtime. 
λ FTI offers the option to dedicate one process per node for fault tolerance to minimize 
the checkpoint overhead. 
λ While using dedicated processes for asynchronous tasks FTI allows the user to do a 
fine-grained selection about the tasks to offload. 
λ While using dedicated processes, FTI splits the global communicator and returns a 
new communicator to isolate the FT-dedicate ranks. 
λ FTI monitors the timestep length and can dynamically adapt the checkpointing 
interval during runtime, keeping a consistent state.  
λ Applications ported: HACC, CESM (ice module), LAMMPS, GYSELA5D, 
SPECFEM3D (CUDA version), HYDRO. 



API and code example 

 
 

 
int main(int argc, char **argv) { 
 
   MPI_Init(&argc, &argv); 
   FTI_Init(“conf.fti”, MPI_COMM_WORLD); 
 
   double *grid; 
   int i, steps=500, size=10000; 
   initialize(grid); 
   FTI_Protect(0, &i,   1,   FTI_INTG);   
   FTI_Protect(1, grid, size,FTI_DFLT);   
  
   for (i=0; i<steps; i++) { 
      FTI_Snapshot(); 
      kernel1(grid); 
      kernel2(grid); 
      comms(FTI_COMM_WORLD); 
   } 
 
   FTI_Finalize(); 
   MPI_Finalize(); 
   return 0; 
} 

File System: Classic Ckpt. 
Slowest of all levels. 

The most reliable. Power outage. 

RS Encoding: Ckpt. Encoding. 
Slow for large checkppoints. 

Reliable, multiple node crashes. 

Partner Copy: Ckpt. Replication. 
Fast copy to neighbor node. 

It tolerates single node crashes. 

Local Storage: SSD, PCM, NVM. 
Fastest checkpoint level. 

Low reliability, transient failures. 
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λ Weak scaling on MIRA (BG\Q) 
λ LAMMPS, Lennard-Jones 
simulation of 1.3 billion atoms 
λ 512 nodes, 64 MPI processes per 
node ( 32,678 processes) 
λ Power monitoring and checkpoint 
every ~5 minutes 
λ Less than 5% overhead on time to 
completion 

λ Weak scaling to ~10k proc. 
λ CURIE supercomputer in France 
λ SSD on the compute nodes  
λ HYDRO scientific application 
λ Checkpointing every ~6 minutes 

FTI scaling 



Extreme-Scale Resilience for Billion-Way Parallelism	


•  Coordinators 
–  US: Kento Sato, Kathryn Mohror, Adam Moody, 

Todd Gamblin, Bronis R. de Sipinski (LLNL) 
–  JP: Satoshi Matsuok (Tokyo Tech), Naoya 

Maruyama (RIKEN) 
•  Description 

–  The Tokyo Tech group creates resilience APIs 
for transparent and fast recovery, resilience 
modeling for optimizing environment, and 
resilience architecture for scalable and reliable 
checkpoint/restart, then feeds back to SCR, the 
production resilience library developed at LLNL. 
The production library will be deployed in 
TSUBAME3.0 

•  How to collaborate 
–  Biweekly meeting 
–  Student / young researchers exchange 

•  Deliverables 
–  Pre-standardization of Resilience API	

–  Production resilience interface, SCR 
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•  Schedule (DRAFT) 
2015	
 2016	
 2017	
 2018	
 2019	
 2020	
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Kento Sato 
LLNL Internship 
Now LLNL PostDoc	
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int main (int *argc, char *argv[]) { 
  FMI_Init(&argc, &argv); 
  FMI_Comm_rank(FMI_COMM_WORLD, &rank); 
  /* Application’s initialization */ 
  while ((               ) < numloop) { 
    /* Application’s program */ 
  } 
  /* Application’s finalization */ 
  FMI_Finalize(); 
} 

FMI	
  example	
  code	
  

n = FMI_Loop(…)  

•  FMI_Loop	
  enables	
  transparent	
  recovery	
  and	
  roll-­‐
back	
  on	
  a	
  failure	
  

–  Periodically	
  write	
  a	
  checkpoint	
  
–  Restore	
  the	
  last	
  checkpoint	
  on	
  a	
  failure	
  

[IPDPS2014,  Kento  Sato  et  al.]	
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Figure 4.13: Checkpoint/Restart scalability with 6 GB/node checkpoints, 12 process-
es/node

the performance of FMI with an MPI implementation. For those experiments, we used

MVAPICH2 version 1.2 running on top of SLURM [76].

4.6.1 FMI Performance

Table 4.2: Ping-Poing Performance of MPI and FMI

1-byte Latency Bandwidth (8MB)
MPI 3.555 usec 3.227 GB/s
FMI 3.573 usec 3.211 GB/s

We measured the point-to-point communication performance on Sierra, and compare

FMI to MVAPICH2. Table 4.2 shows the ping-pong communication latency for 1-byte

messages, and bandwidth for a message size of 8 MB. Because FMI can intercept MPI

calls, we compiled the same ping-pong source for both MPI and FMI. The results show

that FMI has very similar performance compared to MPI for both the latency and the

bandwidth. The overhead for providing fault tolerance in FMI is negligibly small for

messaging.

Because failure rates are expected to increase at extreme scale, checkpoint/restart for

failure recovery must be fast and scalable. To evaluate the scalability of checkpoint/restart

in FMI, we ran a benchmark which writes checkpoints (6 GB/node), and then recovers

P2P communication performance 

Even with the high failure rate,  
FMI incurs only a 28% overhead 

MTBF: 1 minute 

 FMI directly writes checkpoints 
via memcpy, and can exploit the 

bandwidth 

API 

Architecture 

Modeling 

Analysis 

Example code & Evaluation 
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[SC12,  Kento  Sato  et  al.]	


API 

Architecture 

Modeling 

Analysis 

•  Objective: Minimize checkpoint overhead to PFS
o  Minimize CPU usage, memory and network bandwidth

•  Proposed method: Implementation and modeling 
Non-blocking checkpointing
o  Asynchronously write checkpoints to PFS through Staging nodes using 

RDMA
o  Determine the optimal checkpoint interval on the asynchronous 

checkpoint scheme

8% 

Failure analysis on TSUBAME2.0 

8-­‐12%	
  of	
  failures	
  s'll	
  	
  
requires	
  PFS	
  checkpoint	
  

x Computation state followed by 
level-x checkpoint 

x Recovery state from level-x 
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Fig. 2 (a) Left: Flat buffer system (b) Right: Burst buffer system

ging overhead. In addition, if we apply uncoordinated check-
pointing to MPI applications, indirect global synchronization can
occur. For example, process(a2) in cluster(A) wants to send a
message to process(b1) in cluster(B), which is writing its check-
point at that time. Process(a2) waits for process(b1) because pro-
cess(b1) is doing I/O and can not receive or reply to any mes-
sages, which keeps process (a1) waiting to checkpoint with pro-
cess (a2) in Figure 1. If such a dependency propagates across all
processes, it results in indirect global synchronization. Many MPI
applications exchange messages between processes in a shorter
period of time than is required for checkpoints, so we assume
uncoordinated checkpointing time is same as coordinated check-
pointing one in the model in Section 4.

2.4 Target Checkpoint/Restart Strategies
As discussed previously, multilevel and asynchronous ap-

proaches are more efficient than single and synchronous check-
point/restart respectively. However, there is a trade-off between
coordinated and uncoordinated checkpointing given an applica-
tion and the configuration. In this work, we compare the ef-
ficiency of multilevel asynchronous coordinated and uncoordi-
nated checkpoint/restart. However, because we have already
found that these approaches may be limited in increasing applica-
tion efficiencies at extreme scale [29], we also consider storage
architecture approaches.

3. Storage designs
Our goal is to achieve a more reliable system with more effi-

cient application executions. Thus, we consider not only a soft-
ware approach via checkpoint/restart techniques, but also con-
sider different storage architectures. In this section, we introduce
an mSATA-based SSD burst buffer system (Burst buffer system),
and explore the advantages by comparing to a representative cur-
rent storage system (Flat buffer system).

3.1 Current Flat Buffer System
In a flat buffer system (Figure 2 (a)), each compute node has

its dedicated node-local storage, such as an SSD, so this design
is scalable with increasing number of compute nodes. Several
supercomputers employ this flat buffer system [13], [22], [24].
However this design has drawbacks: unreliable checkpoint stor-
age and inefficient utilization of storage resources. Storing check-
points in node-local storage is not reliable because an applica-
tion can not restart its execution if a checkpoint is lost due to a
failed compute node. For example, if compute node 1 in Figure
2 (a) fails, a checkpoint on SSD 1 will be lost because SSD 1
is connected to the failed compute node 1. Storage devices can
be underutilized with uncoordinated checkpointing and message

logging. While the system can limit the number of processes to
restart, i.e., perform a partial restart, in a flat buffer system, lo-
cal storage is not utilized by processes which are not involved in
the partial restart. For example, if compute node 1 and 3 are in a
same cluster, and restart from a failure, the bandwidth of SSD 2
and 4 will not be utilized. Compute node 1 can write its check-
points on the SSD of compute node 2 as well as its own SSD in
order to utilize both of the SSDs on restart, but as argued earlier
distributing checkpoints across multiple compute nodes is not a
reliable solution.

Thus, future storage architectures require not only efficient but
reliable storage designs for resilient extreme scale computing.

3.2 Burst Buffer System
To solve the problems in a flat buffer system, we consider a

burst buffer system [21]. A burst buffer is a storage space to
bridge the gap in latency and bandwidth between node-local stor-
age and the PFS, and is shared by a subset of compute nodes.
Although additional nodes are required, a burst buffer can offer
a system many advantages including higher reliability and effi-
ciency over a flat buffer system. A burst buffer system is more
reliable for checkpointing because burst buffers are located on
a smaller number of dedicated I/O nodes, so the probability of
lost checkpoints is decreased. In addition, even if a large number
of compute nodes fail concurrently, an application can still ac-
cess the checkpoints from the burst buffer. A burst buffer system
provides more efficient utilization of storage resources for partial
restart of uncoordinated checkpointing because processes involv-
ing restart can exploit higher storage bandwidth. For example, if
compute node 1 and 3 are in the same cluster, and both restart
from a failure, the processes can utilize all SSD bandwidth unlike
a flat buffer system. This capability accelerates the partial restart
of uncoordinated checkpoint/restart.

Table 1 Node specification
CPU Intel Core i7-3770K CPU (3.50GHz x 4 cores)

Memory Cetus DDR3-1600 (16GB)
M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 msata 256GB CT256M4SSD3

(Peak read: 500MB/s, Peak write: 260MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Fram
RAID Card Adaptec RAID 7805Q ASR-7805Q Single

To explore the bandwidth we can achieve with only commod-
ity devices, we developed an mSATA-based SSD test system. The
detailed specification is shown in Table 1. The theoretical peak
of sequential read and write throughput of the mSATA-based SSD
is 500 MB/sec and 260 MB/sec, respectively. We aggregate the
eight SSDs into a RAID card, and connect two the RAID cards
via PCE-express(x8) 3.0. The theoretical peak performance of
this configuration is 8 GB/sec for read and 4.16 GB/sec for write
in total. Our preliminary results showed that actual read band-
width is 7.7 GB/sec (96% of peak) and write bandwidth is 3.8
GB/sec (91% of peak) [32] . By adding two more RAID cards,
and connecting via high-speed interconnects, we expect to be able
to build a burst buffer machine using only commodity devices
with 16 GB/sec of read, and 8.32 GB/sec of write throughput.

c⃝ 2013 Information Processing Society of Japan 3
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Fig. 2 (a) Left: Flat buffer system (b) Right: Burst buffer system

ging overhead. In addition, if we apply uncoordinated check-
pointing to MPI applications, indirect global synchronization can
occur. For example, process(a2) in cluster(A) wants to send a
message to process(b1) in cluster(B), which is writing its check-
point at that time. Process(a2) waits for process(b1) because pro-
cess(b1) is doing I/O and can not receive or reply to any mes-
sages, which keeps process (a1) waiting to checkpoint with pro-
cess (a2) in Figure 1. If such a dependency propagates across all
processes, it results in indirect global synchronization. Many MPI
applications exchange messages between processes in a shorter
period of time than is required for checkpoints, so we assume
uncoordinated checkpointing time is same as coordinated check-
pointing one in the model in Section 4.

2.4 Target Checkpoint/Restart Strategies
As discussed previously, multilevel and asynchronous ap-

proaches are more efficient than single and synchronous check-
point/restart respectively. However, there is a trade-off between
coordinated and uncoordinated checkpointing given an applica-
tion and the configuration. In this work, we compare the ef-
ficiency of multilevel asynchronous coordinated and uncoordi-
nated checkpoint/restart. However, because we have already
found that these approaches may be limited in increasing applica-
tion efficiencies at extreme scale [29], we also consider storage
architecture approaches.

3. Storage designs
Our goal is to achieve a more reliable system with more effi-

cient application executions. Thus, we consider not only a soft-
ware approach via checkpoint/restart techniques, but also con-
sider different storage architectures. In this section, we introduce
an mSATA-based SSD burst buffer system (Burst buffer system),
and explore the advantages by comparing to a representative cur-
rent storage system (Flat buffer system).

3.1 Current Flat Buffer System
In a flat buffer system (Figure 2 (a)), each compute node has

its dedicated node-local storage, such as an SSD, so this design
is scalable with increasing number of compute nodes. Several
supercomputers employ this flat buffer system [13], [22], [24].
However this design has drawbacks: unreliable checkpoint stor-
age and inefficient utilization of storage resources. Storing check-
points in node-local storage is not reliable because an applica-
tion can not restart its execution if a checkpoint is lost due to a
failed compute node. For example, if compute node 1 in Figure
2 (a) fails, a checkpoint on SSD 1 will be lost because SSD 1
is connected to the failed compute node 1. Storage devices can
be underutilized with uncoordinated checkpointing and message

logging. While the system can limit the number of processes to
restart, i.e., perform a partial restart, in a flat buffer system, lo-
cal storage is not utilized by processes which are not involved in
the partial restart. For example, if compute node 1 and 3 are in a
same cluster, and restart from a failure, the bandwidth of SSD 2
and 4 will not be utilized. Compute node 1 can write its check-
points on the SSD of compute node 2 as well as its own SSD in
order to utilize both of the SSDs on restart, but as argued earlier
distributing checkpoints across multiple compute nodes is not a
reliable solution.

Thus, future storage architectures require not only efficient but
reliable storage designs for resilient extreme scale computing.

3.2 Burst Buffer System
To solve the problems in a flat buffer system, we consider a

burst buffer system [21]. A burst buffer is a storage space to
bridge the gap in latency and bandwidth between node-local stor-
age and the PFS, and is shared by a subset of compute nodes.
Although additional nodes are required, a burst buffer can offer
a system many advantages including higher reliability and effi-
ciency over a flat buffer system. A burst buffer system is more
reliable for checkpointing because burst buffers are located on
a smaller number of dedicated I/O nodes, so the probability of
lost checkpoints is decreased. In addition, even if a large number
of compute nodes fail concurrently, an application can still ac-
cess the checkpoints from the burst buffer. A burst buffer system
provides more efficient utilization of storage resources for partial
restart of uncoordinated checkpointing because processes involv-
ing restart can exploit higher storage bandwidth. For example, if
compute node 1 and 3 are in the same cluster, and both restart
from a failure, the processes can utilize all SSD bandwidth unlike
a flat buffer system. This capability accelerates the partial restart
of uncoordinated checkpoint/restart.

Table 1 Node specification
CPU Intel Core i7-3770K CPU (3.50GHz x 4 cores)

Memory Cetus DDR3-1600 (16GB)
M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 msata 256GB CT256M4SSD3

(Peak read: 500MB/s, Peak write: 260MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Fram
RAID Card Adaptec RAID 7805Q ASR-7805Q Single

To explore the bandwidth we can achieve with only commod-
ity devices, we developed an mSATA-based SSD test system. The
detailed specification is shown in Table 1. The theoretical peak
of sequential read and write throughput of the mSATA-based SSD
is 500 MB/sec and 260 MB/sec, respectively. We aggregate the
eight SSDs into a RAID card, and connect two the RAID cards
via PCE-express(x8) 3.0. The theoretical peak performance of
this configuration is 8 GB/sec for read and 4.16 GB/sec for write
in total. Our preliminary results showed that actual read band-
width is 7.7 GB/sec (96% of peak) and write bandwidth is 3.8
GB/sec (91% of peak) [32] . By adding two more RAID cards,
and connecting via high-speed interconnects, we expect to be able
to build a burst buffer machine using only commodity devices
with 16 GB/sec of read, and 8.32 GB/sec of write throughput.

c⃝ 2013 Information Processing Society of Japan 3
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  I/O	
  interfaces	
  
–  open,	
  read,	
  write	
  and	
  close	
  
–  Client	
  can	
  open	
  any	
  files	
  on	
  any	
  servers	
  

•  IBIO	
  use	
  ibverbs	
  for	
  communica'on	
  between	
  
clients	
  and	
  servers	
  

–  Exploit	
  network	
  bandwidth	
  of	
  infiniBand	
  	
  

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

0 2 4 6 8 10 12 14 16 

Re
ad

/W
ri

te
 th

ro
ug

hp
ut

 (G
B/

se
c)

 

# of Processes 

Read - Peak Read - Local Read - IBIO Read - NFS 
Write - Peak Write - Local Write - IBIO Write - NFS 

CCGrid2014 Best Paper 
Award  

(Kento Sato, Kathryn Mohror, Adam Moody, 
Todd Gamblin, Bronis R. de Supinski, Naoya 

Maruyama & Satoshi Matsuoka) 

[CCGrid2014  (Best  Paper  Award),  Kento  Sato  et  al.]	


API 

Architecture 

Modeling 

Analysis 

LLNL-­‐PRES-­‐665006	
  



Resilience	
  modeling	
  overview	
  

12	
  

To	
  find	
  out	
  the	
  best	
  checkpoint/restart	
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  buffers,	
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  strategies	
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Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
λi

λ
(1 − e−λT )

ti(T ) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT )
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure
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constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
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the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.
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we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
λi

λ
(1 − e−λT )

ti(T ) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT )
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure
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Table 3 Simulation configuration

level 1 level 2
ri 16 GB/sec 10 GB/sec
wi 8.32 GB/sec 10 GB/sec

Flat buffer Burst buffer
H2 {v1, v2} H2 {1, 1088} H2 {32, 34}
{F1, F2} {2.13 × 10−6, 4.27 × 10−7} {2.13 × 10−6, 7.61 × 10−8}

Checkpoint size per node (D) 5GB
Encoding rate node (e1) 400MB/sec
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Fig. 3 Efficiency of multi-level coordinated and uncoordinated check-
point/restart on a flat buffer system and a burst buffer system

compute nodes.
Failure rates(F) are based on failure analysis using pF3D [8].

The failure analysis shows that average failure rates of a single
compute node requiring LOCAL is 1.96×10−10, XOR is 1.77×10−9,
PFS is 3.93 × 10−10. In a flat buffer system, each failure rate
is calculated by multiplying the each failure rate by the num-
ber of compute nodes, i.e., 1088 nodes. This leads to failure
rates of Failure rate of a single Coastal nodes is We use fail-
ure analysis in 2.14 × 10−7 for LOCAL, 1.92 × 10−6 for XOR,
and 4.27 × 10−7 for PFS. Actually, if a level-i failure rate is
lower than a level-i+ 1 one, the optimal level i checkpoint counts
is zero because level i can be recovery level i + 1 checkpoint,
which is written more frequently than level i. If a compute nodes
failure occurs, a flat buffer system lose checkpoint data on the
failed compute node, so XOR is required to restore the lost check-
point data. Thus, we use 2 level checkpoint/restart where level
1 is XOR, and level 2 is PFS, and each level of failure rate is
{F1, F2} = {2.14 × 10−7 + 1.92 × 10−6, 4.27 × 10−7}.

In a burst buffer system, 34 burst buffer nodes are used, so fail-
ure rate of entire burst buffer nodes is calculated as 6.67 × 10−8,
failure rate requiring PFS as 1.33 × 10−8. Even on a com-
pute nodes failure, a burst buffer nodes can keep checkpoint
data, so LOCAL checkpoint is enough to tolerate a compute node
failure. Thus, we use 2 level checkpoint/restart where level 1
is LOCAL, and level 2 is PFS, and each level of failure rate is
{F1, F2} = {2.14×10−7 +1.92×10−6, 6.28×10−8 +1.33×10−8}
for burst buffer system.

5.2 Results
At extreme systems will be larger, overall failure rates and

checkpoint size are expected to increase. To explore the effects,
we increase failure rates and level 2 checkpoint costs by factors
of 1, 2, 10, 50 and 100, and compare efficiency between multi-
level coordinated and uncoordinated checkpoint/restart on a flat
buffer system and a burst buffer system. We do not change level
1 checkpoint cost, since the performance of flat and burst buffer
is expected to scale with system size.

As Figure 3 shows the efficiency under different failure rates
and checkpoint costs. When we computes the efficiency, we op-
timize level-1 and 2 checkpoint frequency (v1 and v2), and inter-
val between checkpoints (T ) using our multi-level asynchronous
checkpoint/restart model, which yields the maximal efficiency.
The burst buffer system always achieves higher efficiency than
the flat buffer system. The efficiency gap becomes more apparent
with higher failure rates and higher checkpoint cost because the
burst buffer system integrate checkpoints into the fewer number
of burst buffer nodes than compute nodes, which decrease proba-
bility of losing checkpoints, and restarting from a slower PFS.

Table 4 Allowable message logging overhead

Flat buffer Burst buffer
scale factor Allowable message scale factor Allowable message

logging overhead logging overhead
1 0.0232% 1 0.00435%
2 0.0929% 2 0.0175%

10 2.45% 10 0.468%
50 84.5% 50 42.0%
100 ≈ 100% 100 99.9%

The efficiency in Figure 3 does not include message logging
overhead, so validity of uncoordinated checkpoint/restart depends
on degree of message logging overhead. Table 4 shows allowable
message logging overhead. To achieve higher efficiency than co-
ordinated checkpoint/restart, the logging overhead must be below
a few percent in a current and a 10 times scaled system. In sys-
tems whose failure rates and checkpoint costs is 50 times higher
than a current system, uncoordinated checkpoint/restart is neces-
sary even with high logging overhead. By using uncoordinated
checkpoint/restart, we can leverage a burst buffer, and achieve
70% of efficiency even on two order of magnitude larger scale
systems because partial restart of uncoordinated checkpoint can
exploit bandwidth of both burst buffers and a PFS, and accelerate
restart time.

Building a reliable data center or supercomputer, and maxi-
mizing system efficiency are significant given fixed amount of
cost. To explore which tiers of storage can impact system ef-
ficiency improvement, we increase performance of each tier of
storage failure by factors of 1, 2, 10 and 20. Figure 4 shows
efficiency in increasing scale factor of performance of level-1
checkpoint/restart in 100 times scaled systems in Figure 3. As
shown, improvement of flat buffer and burst buffer performance
does not impact the system efficiency. But, as in Figure 5, in-
creasing PFS performance improve the system efficiency, and we
can achieve over 80% efficiency with both coordinated and unco-
ordinated checkpoint/restart on the burst buffer system. The both
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Fig. 5. Runtime overhead of communication profiling. Subfigure (5a) shows the percentage increase in communication latency for the various IMB benchmarks.
These results are separated into two charts for increased readability. Subfigure (5b) shows the increase in runtime of NPB kernels and pseudo applications. The
height of each bar represents the overhead as a percentage of the communication runtime and the bars annotation states the actual change in communication
runtime.

2) Increase in Communication Latency: Figure 5 shows the
results of our experiments. These graphs represent the increase
in communication latency caused by our profiler and does not re-
flect the time for dumping profiles. Results were averaged across
all 100 pairs of runs with standard errors <1% in all cases. The
average overhead was 11.6%, 3.4%, and 1.3% for MPI_Bcast,
MPI_Reduce, and MPI_Scatter, respectively, over all
message sizes while other IMB benchmarks averaged below
1% overhead. Similarly, all NPB benchmarks averaged below
1%, with the communication-bound FT benchmark reporting
the highest value of 0.46%.

The averaged runtime differences were in the order of
microseconds for the IMB benchmarks and milliseconds for
the NPB benchmark. Because such small differences could
be attributed to jitters in the system, we ran similar exper-
iments at different times over several days for verification.
Similar trends were observed in the results with some runs
occasionally reporting negative overheads and all overheads
remaining negligible except for spikes in the MPI_Bcast
and MPI_Reduce results for the message sizes shown. We
confirmed that the spike in the MPI_Bcast can be attributed
to Open MPI switching from the send/receive semantics to
RDMA pipeline protocol when the message size surpasses
256 KB. We ran a set of MPI_Bcast trials with the RDMA
pipeline size limit changed from 256 KB to 1 MB and the
pipeline send length changed from 1 MB to 4 MB. As expected,
we observed additional spikes for messages between 1 MB and
4 MB in size. Further research is being planned to ascertain
the cause of this phenomenon.

3) Increase in Application Runtime: The total increase in
application runtime when ibprof is used is equal to the
increase in communication latency plus the time taken to write
profiles. On our system, the time taken for a complete profile
dump was less than 1 seconds, irrespective of the application
or communication pattern. This time is dependent on the IO
subsystem’s performance, which is beyond the scope of this
work.

VI. CASE STUDY

In this Section, we showcase the usability of our profiling
approach and analysis toolchain. We analyze the execution of

samplesort, a popular sorting algorithm for parallel systems,
and we also compare the performance of different MPI library
versions. Experiments were conducted on TSUBAME2.5, which
utilizes two independent IB subnets and each compute node
has a link to each subnet.

A. Visualizing Traffic Patterns and Contention in Samplesort

Samplesort, as described in [19], is a sorting algorithm for
distributed memory environments. The main idea behind the
algorithm is to find a set splitters to partition the input keys into
p buckets corresponding to p processes in such a way that every
element in the i

th bucket is less than or equal to each of the
elements in the (i+ 1)th bucket. Because splitters are selected
randomly, the resulting bucket sizes may be uneven. This could
result in communication and computation imbalances when
keys are shuffled and sorted, respectively.

For our experiment, we used the samplesort code presented
in [19] 1. We executed samplesort with 128 MPI processes,
using a 1:1 process-to-node mapping. Each process started
with 1 GB of unsorted integers, randomly generated with a
uniform distribution. The same random number seed was
used in all cases. Fig. 6 shows a typlical process-centric
visualization of samplesort’s main communication routines over
128 nodes using Paraver. We are unable to extract any network
performance insights from this and other similar visualizations
that are generated using PMPI-based instrumentation tools.

1) Performance Analysis using our ibprof Profiler and
our Boxfish Module: We profiled an execution of samplesort
using ibprof and visualized the network traffic in our
Boxfish fat tree module. Segments of the code were manually
instrumented to enable the identification of the code block
where the all-to-all key exchange is conducted in order to
perform a meaningful analysis. Fig. 7 shows the network traffic
generated by the main communication routines of samplesort.
This section of the profile reflects the traffic generated by the
segment of the program highlighted in Fig. 6.

The red links that are visible in area C of Fig. 7 represent
links that were carrying the most traffic during the commu-
nication block of the code. By exploring the visualization

1Source code: http://users.ices.utexas.edu/˜hari/talks/hyksort.html
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Fig. 5. Runtime overhead of communication profiling. Subfigure (5a) shows the percentage increase in communication latency for the various IMB benchmarks.
These results are separated into two charts for increased readability. Subfigure (5b) shows the increase in runtime of NPB kernels and pseudo applications. The
height of each bar represents the overhead as a percentage of the communication runtime and the bars annotation states the actual change in communication
runtime.

2) Increase in Communication Latency: Figure 5 shows the
results of our experiments. These graphs represent the increase
in communication latency caused by our profiler and does not re-
flect the time for dumping profiles. Results were averaged across
all 100 pairs of runs with standard errors <1% in all cases. The
average overhead was 11.6%, 3.4%, and 1.3% for MPI_Bcast,
MPI_Reduce, and MPI_Scatter, respectively, over all
message sizes while other IMB benchmarks averaged below
1% overhead. Similarly, all NPB benchmarks averaged below
1%, with the communication-bound FT benchmark reporting
the highest value of 0.46%.

The averaged runtime differences were in the order of
microseconds for the IMB benchmarks and milliseconds for
the NPB benchmark. Because such small differences could
be attributed to jitters in the system, we ran similar exper-
iments at different times over several days for verification.
Similar trends were observed in the results with some runs
occasionally reporting negative overheads and all overheads
remaining negligible except for spikes in the MPI_Bcast
and MPI_Reduce results for the message sizes shown. We
confirmed that the spike in the MPI_Bcast can be attributed
to Open MPI switching from the send/receive semantics to
RDMA pipeline protocol when the message size surpasses
256 KB. We ran a set of MPI_Bcast trials with the RDMA
pipeline size limit changed from 256 KB to 1 MB and the
pipeline send length changed from 1 MB to 4 MB. As expected,
we observed additional spikes for messages between 1 MB and
4 MB in size. Further research is being planned to ascertain
the cause of this phenomenon.

3) Increase in Application Runtime: The total increase in
application runtime when ibprof is used is equal to the
increase in communication latency plus the time taken to write
profiles. On our system, the time taken for a complete profile
dump was less than 1 seconds, irrespective of the application
or communication pattern. This time is dependent on the IO
subsystem’s performance, which is beyond the scope of this
work.

VI. CASE STUDY

In this Section, we showcase the usability of our profiling
approach and analysis toolchain. We analyze the execution of

samplesort, a popular sorting algorithm for parallel systems,
and we also compare the performance of different MPI library
versions. Experiments were conducted on TSUBAME2.5, which
utilizes two independent IB subnets and each compute node
has a link to each subnet.

A. Visualizing Traffic Patterns and Contention in Samplesort

Samplesort, as described in [19], is a sorting algorithm for
distributed memory environments. The main idea behind the
algorithm is to find a set splitters to partition the input keys into
p buckets corresponding to p processes in such a way that every
element in the i

th bucket is less than or equal to each of the
elements in the (i+ 1)th bucket. Because splitters are selected
randomly, the resulting bucket sizes may be uneven. This could
result in communication and computation imbalances when
keys are shuffled and sorted, respectively.

For our experiment, we used the samplesort code presented
in [19] 1. We executed samplesort with 128 MPI processes,
using a 1:1 process-to-node mapping. Each process started
with 1 GB of unsorted integers, randomly generated with a
uniform distribution. The same random number seed was
used in all cases. Fig. 6 shows a typlical process-centric
visualization of samplesort’s main communication routines over
128 nodes using Paraver. We are unable to extract any network
performance insights from this and other similar visualizations
that are generated using PMPI-based instrumentation tools.

1) Performance Analysis using our ibprof Profiler and
our Boxfish Module: We profiled an execution of samplesort
using ibprof and visualized the network traffic in our
Boxfish fat tree module. Segments of the code were manually
instrumented to enable the identification of the code block
where the all-to-all key exchange is conducted in order to
perform a meaningful analysis. Fig. 7 shows the network traffic
generated by the main communication routines of samplesort.
This section of the profile reflects the traffic generated by the
segment of the program highlighted in Fig. 6.

The red links that are visible in area C of Fig. 7 represent
links that were carrying the most traffic during the commu-
nication block of the code. By exploring the visualization

1Source code: http://users.ices.utexas.edu/˜hari/talks/hyksort.html
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2) Increase in Communication Latency: Figure 5 shows the
results of our experiments. These graphs represent the increase
in communication latency caused by our profiler and does not re-
flect the time for dumping profiles. Results were averaged across
all 100 pairs of runs with standard errors <1% in all cases. The
average overhead was 11.6%, 3.4%, and 1.3% for MPI_Bcast,
MPI_Reduce, and MPI_Scatter, respectively, over all
message sizes while other IMB benchmarks averaged below
1% overhead. Similarly, all NPB benchmarks averaged below
1%, with the communication-bound FT benchmark reporting
the highest value of 0.46%.

The averaged runtime differences were in the order of
microseconds for the IMB benchmarks and milliseconds for
the NPB benchmark. Because such small differences could
be attributed to jitters in the system, we ran similar exper-
iments at different times over several days for verification.
Similar trends were observed in the results with some runs
occasionally reporting negative overheads and all overheads
remaining negligible except for spikes in the MPI_Bcast
and MPI_Reduce results for the message sizes shown. We
confirmed that the spike in the MPI_Bcast can be attributed
to Open MPI switching from the send/receive semantics to
RDMA pipeline protocol when the message size surpasses
256 KB. We ran a set of MPI_Bcast trials with the RDMA
pipeline size limit changed from 256 KB to 1 MB and the
pipeline send length changed from 1 MB to 4 MB. As expected,
we observed additional spikes for messages between 1 MB and
4 MB in size. Further research is being planned to ascertain
the cause of this phenomenon.

3) Increase in Application Runtime: The total increase in
application runtime when ibprof is used is equal to the
increase in communication latency plus the time taken to write
profiles. On our system, the time taken for a complete profile
dump was less than 1 seconds, irrespective of the application
or communication pattern. This time is dependent on the IO
subsystem’s performance, which is beyond the scope of this
work.

VI. CASE STUDY

In this Section, we showcase the usability of our profiling
approach and analysis toolchain. We analyze the execution of

samplesort, a popular sorting algorithm for parallel systems,
and we also compare the performance of different MPI library
versions. Experiments were conducted on TSUBAME2.5, which
utilizes two independent IB subnets and each compute node
has a link to each subnet.

A. Visualizing Traffic Patterns and Contention in Samplesort

Samplesort, as described in [19], is a sorting algorithm for
distributed memory environments. The main idea behind the
algorithm is to find a set splitters to partition the input keys into
p buckets corresponding to p processes in such a way that every
element in the i

th bucket is less than or equal to each of the
elements in the (i+ 1)th bucket. Because splitters are selected
randomly, the resulting bucket sizes may be uneven. This could
result in communication and computation imbalances when
keys are shuffled and sorted, respectively.

For our experiment, we used the samplesort code presented
in [19] 1. We executed samplesort with 128 MPI processes,
using a 1:1 process-to-node mapping. Each process started
with 1 GB of unsorted integers, randomly generated with a
uniform distribution. The same random number seed was
used in all cases. Fig. 6 shows a typlical process-centric
visualization of samplesort’s main communication routines over
128 nodes using Paraver. We are unable to extract any network
performance insights from this and other similar visualizations
that are generated using PMPI-based instrumentation tools.

1) Performance Analysis using our ibprof Profiler and
our Boxfish Module: We profiled an execution of samplesort
using ibprof and visualized the network traffic in our
Boxfish fat tree module. Segments of the code were manually
instrumented to enable the identification of the code block
where the all-to-all key exchange is conducted in order to
perform a meaningful analysis. Fig. 7 shows the network traffic
generated by the main communication routines of samplesort.
This section of the profile reflects the traffic generated by the
segment of the program highlighted in Fig. 6.

The red links that are visible in area C of Fig. 7 represent
links that were carrying the most traffic during the commu-
nication block of the code. By exploring the visualization

1Source code: http://users.ices.utexas.edu/˜hari/talks/hyksort.html
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Whole-­‐app  model  of  ExaFMM	
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Dynamic Graphs (temporal graph) 
•  the structure of a graph 

changes dynamically over time 
•  many real-world graphs are 

classified into dynamic graph 

•  Most studies for large graphs have not focused on a dynamic 
graph data structure, but rather a static one, such as Graph 500 

•  Even with the large memory capacities of HPC systems, many 
graph applications require additional out-of-core memory  
(this part is still at an early stage) 

Sparse Large Scale-free 
•  social network,  genome 

analysis, WWW, etc. 
•  e.g., Facebook manages 

1.39 billion active users 
as of 2014, with more 
than 400 billion edges 

Distributed Large-Scale Dynamic Graph Data Store  
Keita Iwabuchi1, 2, Scott Sallinen3, Roger Pearce2, 

Brian Van Essen2, Maya Gokhale2, Satoshi Matsuoka1   
1.  Tokyo Institute of Technology (Tokyo Tech) 

2. Lawrence Livermore National Laboratory (LLNL) 
3. University of British Columbia 

Source:	
  Jakob	
  Enemark	
  and	
  Kim	
  Sneppen,	
  “Gene	
  duplica'on	
  models	
  for	
  directed	
  networks	
  
with	
  limits	
  on	
  growth”,	
  Journal	
  of	
  Sta's'cal	
  Mechanics:	
  Theory	
  and	
  Experiment	
  2007	
  



Controller / 
Partitioner 

Comp. 
Node 

Comp. 
Node 

Distributed Dynamic Graph Data 
Store 

share.sandia.gov 

Comp. 
Node 

Graph Application 

Comp. 
Node 

Comp. 
Node 

Developing a distributed dynamic graph store for data intensive 
supercomputers equipped with locally attached NVRAM 

Streaming	
  edges	
  	
  



Degree Aware Dynamic Graph Data Store 
(DegAwareRHH) 

Robin Hood Hashing1 

[1]  P. Celis, “Robin hood hashing,” Ph.D. dissertation, 1986.  Designed to 
maintain a small 
average probe 
distance 

w1 

w5 v1 
p1 

v3 
p3 

w2 

v4 
p4 

w3 

w6 

v2 
p2 

v1 p1 

v2 p2 

v3 p3 

v4 p4 

Vertex-table 

v2 w1 v3 w2 

v4 w3 

v1 w4 v3 w5 

Edge-list 

v: vertex 
p: vertex property data 
w: edge weight 

Vertex-table : tree, hash table 
Edge-list       : vector, linked-list 

v1 v4 
p1 p4 

v1 v3 
w5 w6 

{v2,v4
} 

{v3,v4
} 

p2 p3 
w3 w4 

w4 

Low-­‐degree	
  
table	
  

Mid-­‐high	
  degree	
  table	


DegAwareRHH 
Degree Aware Graph Data Structure 

Each	
  table	
  is	
  
composed	
  of	
  Robin	
  
Hood	
  Hashing	


Extend	
  DegAwareRHH	
  for	
  distributed-­‐memory	
  using	
  a	
  async.	
  
MPI	
  communica'on	
  framework[2][3]	
  
 

•  Degree	
  aware	
  data	
  structures,	
  where	
  low-­‐degree	
  ver'ces	
  are	
  
compactly	
  represented	
  

•  Use	
  Robin	
  Hood	
  Hashing[1]	
  because	
  of	
  its	
  locality	
  proper'es	
  to	
  
minimize	
  the	
  number	
  of	
  accesses	
  to	
  NVRAM,	
  reducing	
  page	
  misses.	
  	
  

v2 v3 
w1 w2 

Vertex	
  ID	
  
Vertex	
  property	
  
Edge	
  weight	


[2] R. Pearce, et al, “Scaling techniques for massive scale-free graphs in distributed (external) memory,” 
IPDPS’ 13 
[3] R. Pearce, et al, “Faster parallel traversal of scale free graphs at extreme scale with vertex delegates, 
” SC’ 14 



RMAT 25 graph: #vertices 32M, #edges 1B 

#nodes	
  (24	
  processes	
  per	
  node)	


M
ill
io
n	
  
Re

qu
es
ts
/s
ec
.	


•  STINGER: a state-of-the-art shared-memory dynamic graph 
processing framework developing at Georgia Tech 

•  Baseline: a baseline model using Boost.Interprocess 
•  DegAwareRHH: our proposed dynamic graph store 

Dynamic	
  Large-­‐Scale	
  Graph	
  Construc'on	
  (on-­‐memory)	


Edge	
  inser'on	
  and	
  dele'on	
  
(single	
  node,	
  24	
  threads/processes)	
  

total	
  #edges:	
  1	
  billion	
  

Edge	
  inser'on	
  
total	
  #edges:	
  128	
  billion	
  

Be
z
er

	


Bi
lli
on

	
  R
eq

ue
st
s/
se
c.

	


16x than 
Baseline 

121x than 
STINGER 

over 2 billion 
insertions/

sec. 
overperform
s Baseline 
by 30.69 % 

Due	
  to	
  a	
  skewness	
  of	
  the	
  data	
  set	
  (RMAT	
  
graph),	
  DegAwareRHH	
  overperforms	
  the	
  both	
  
implementa'ons	
  significantly	
  	




2016/2/3 

Publica'on	
  list	
  
•  Keita	
  Iwabuchi,	
  Roger	
  A.	
  Pearce,	
  Brian	
  Van	
  Essen,	
  Maya	
  Gokhale,	
  Satoshi	
  Matsuoka,	
  

“Design	
  of	
  a	
  NVRAM	
  Specialized	
  Degree	
  Aware	
  Dynamic	
  Graph	
  Data	
  Structure”,	
  SC	
  
2015	
  Regular,	
  Electronic,	
  and	
  Educa'onal	
  Poster,	
  Interna'onal	
  Conference	
  for	
  High	
  
Performance	
  Compu'ng,	
  Networking,	
  Storage	
  and	
  Analysis	
  2015	
  (SC	
  ’15),	
  Nov.	
  2015	
  

•  Keita	
  Iwabuchi,	
  Roger	
  A.	
  Pearce,	
  Brian	
  Van	
  Essen,	
  Maya	
  Gokhale,	
  Satoshi	
  Matsuoka,	
  
“Design	
  of	
  a	
  NVRAM	
  Specialized	
  Degree	
  Aware	
  Dynamic	
  Graph	
  Data	
  Structure”,	
  7th	
  
Annual	
  Non-­‐Vola'le	
  Memories	
  Workshop	
  2016,	
  Mar.	
  2016	
  



An	
  OpenACC	
  Extension	
  for	
  Data	
  Layout	
  
Transforma'on	
  w/ORNL	
  

	
  
	
  	


Tetsuya	
  Hoshino(Ph.D	
  Student)	
  
Research	
  Internship	
  @ORNL	
  2014	
  Sep-­‐Nov	
  

	
  
Now:	
  Assistant	
  Professor	
  @	
  Supercompu'ng	
  Center,	
  

The	
  University	
  of	
  Tokyo	
  
	
  

	




Why	
  the	
  extension	
  is	
  needed?	

•  An	
  OpenACC	
  program	
  can	
  be	
  

executed	
  on	
  any	
  devices	
  
–  mul'-­‐core	
  CPU,	
  Xeon	
  Phi,	
  GPUs	
  

•  OpenACC	
  target	
  devices	
  have	
  
different	
  performance	
  
characteris'cs	
  especially	
  about	
  
memory	
  access	
  
–  	
  ex.	
  SoA	
  and	
  AoS	
  

•  Data	
  layout	
  of	
  real-­‐world	
  
applica'ons	
  is	
  complicated	
  and	
  
is	
  shared	
  in	
  the	
  whole	
  program	
  
–  Auto-­‐tuning	
  is	
  required	
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Viscosity	
  and	
  Convec:on	
  phases	


Intel	
  Xeon	
  
(6	
  core)	
  

K20X	
  GPU	
  

The	
  graph	
  shows	
  the	
  result	
  of	
  manual	
  data	
  layout	
  
transforma'on	
  for	
  the	
  viscosity	
  and	
  convec'on	
  
phases	
  of	
  a	
  real-­‐world	
  CFD	
  applica'on	
  UPACS	
  	
  	
  
(Hoshino	
  et	
  al.	
  “CUDA	
  vs	
  OpenACC:	
  Performance	
  Case	
  Studies	
  with	
  
Kernel	
  Benchmarks	
  and	
  a	
  Memory-­‐Bound	
  CFD	
  Applica'on”,	
  CCGrid13)	

 	




An	
  OpenACC	
  extension	
  
#pragma	
  acc	
  transform	


•  Specifica'on	
  

	
  
•  Clause	
  list	
  

–  transpose(	
  array_name::transpose_rule	
  )	
  
•  for	
  mul'-­‐dimensional	
  array	
  	
  
•  A[Z][Y][X][3]	
  →	
  A’[3][Z][Y][X]	
  	
  (transpose	
  rule	
  ::	
  [4,1,2,3])	
  

–  redim(	
  array_name::redim_rule	
  )	
  
•  for	
  1	
  dimensional	
  array	
  	
  
•  B[Z*Y*X*3]	
  →	
  B’[Z][Y][X][3]	
  →	
  B’’[3][Z][Y][X]	
  (by	
  transpose	
  clause)	
  

–  expand(	
  derived_type_array_name	
  )	
  
•  for	
  array	
  of	
  structures	
  
•  C[Z][Y][X].c[3]	
  →	
  C’[Z][Y][X][3]	
  →	
  C’’[3][Z][Y][X]	
  (by	
  transpose	
  clause)	
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#pragma	
  acc	
  transform	
  [clause	
  [[,]	
  clause]	
  …]	
  new-­‐line	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  structured	
  block	
  



Collaborate	
  with	
  ORNL	

•  Implement	
  the	
  direc've	
  top	
  on	
  OpenARC	
  that	
  is	
  an	
  Open-­‐source	
  

OpenACC	
  compiler	
  developed	
  by	
  ORNL	
  	
  
–  Source-­‐to-­‐Source	
  translator	
  

•  Input	
  :	
  Extended	
  OpenACC	
  program	
  	
  
•  Output	
  :	
  OpenACC	
  program	
  

–  It	
  is	
  on	
  going	
  work	
  

Our	
  Translator	
  
	
  
	
  
	
  
	
  
	
  
	
  
	


Extended	
  
OpenACC	


.c	
 input	

OpenARC	
  
generates	
  

AST	


analyze	
  
direc'ves	
  

transform	
  
structures	
   output	


OpenACC	


.c	




Evaluate	
  with	
  Himeno	
  benchmark	
  	
  
(27-­‐point	
  stencil	
  program)	


•  Apply	
  transpose	
  to	
  
coefficient	
  arrays	
  of	
  
Himeno	
  benchmark	
  
–  But	
  the	
  transforma'on	
  is	
  

applied	
  by	
  hands	
  
–  Transformed	
  program	
  is	
  

same	
  as	
  the	
  output	
  program	
  
that	
  OpenARC	
  should	
  output	
  

•  Performance	
  evalua'on	
  
–  CPU	
  :	
  Original	
  is	
  the	
  best	
  
–  GPU	
  :	
  24%	
  up	
  
–  MIC	
  :	
  more	
  than	
  60%	
  down	
  

•  Translator	
  change	
  the	
  
coefficient	
  mul'dimensional	
  
array	
  to	
  1-­‐dimensional	
  array,	
  
it	
  disturbs	
  prefetching	
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Lessons  Learned	


•  Sending	
  actual	
  Ph.D.	
  students	
  to	
  DoE	
  labs	
  extremely	
  
produc've	
  for	
  both	
  sides	
  for	
  tangible	
  collabra'on	
  

•  Tokyo	
  Tech	
  Ph.D.	
  students	
  are	
  extremely	
  good	
  and	
  well	
  
trained	
  by	
  global	
  standards	
  –	
  they	
  usually	
  survive	
  the	
  
filtering	
  of	
  summer	
  interns	
  and	
  produce	
  tangible	
  results	
  

• Many	
  students	
  end	
  up	
  being	
  hired	
  by	
  DoE	
  labs.	
  Others	
  
go	
  to	
  Japanese	
  univ.	
  &	
  labs,	
  etc.	
  =>	
  great	
  talent	
  pool	
  

•  Some	
  administra've	
  obstacles,	
  esp.	
  travel	
  and	
  funding	
  
from	
  both	
  ends	
  –	
  need	
  more	
  flexibility	
  in	
  purpose,	
  
airlines,	
  gaps	
  in	
  travel	
  i'nerary,	
  etc.	
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Tokyo	
  Tech	
  Research	
  on	
  Big	
  Data	
  Convergence	
  
JST-­‐CREST	
  “Extreme	
  Big	
  Data”	
  Project	
  (2013-­‐2018)	


Supercomputers 
Compute&Batch-Oriented 

More fragile 

Cloud　IDC 
Very low BW & Efficiency 
Highly available, resilient 

	


Convergent Architecture (Phases 1~4)  
Large Capacity NVM, High-Bisection NW 

PCB	


TSV Interposer	


High Powered 
Main CPU	


Low 
Power 
CPU	


DRAM	

DRAM	

DRAM	


NVM/
Flash	


NVM/
Flash	


NVM/
Flash	


Low 
Power 
CPU	


DRAM	

DRAM	

DRAM	


NVM/
Flash	


NVM/
Flash	


NVM/
Flash	


2Tbps HBM 
4~6HBM Channels 
1.5TB/s DRAM &  
NVM BW 
 
30PB/s I/O BW Possible 
1 Yottabyte / Year 

EBD System Software 
incl. EBD Object System	
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Large Scale 
Metagenomics	


Massive Sensors and 
Data Assimilation in 
Weather Prediction	


Ultra Large Scale 
Graphs and Social 
Infrastructures	


Exascale Big Data HPC 	


Co-Design	


Future Extreme Big Data Scientific Apps	


Graph	
  Store	


EBD	
  Bag	

Co-Design	
 13/06/06 22:36日本地図

1/1 ページfile:///Users/shirahata/Pictures/日本地図.svg

1000km

K
V
S	


K
V
S	


K
V
S	


EBD	
  KVS	
  

Cartesian	
  Plane	

Co-Design	


Given	
  a	
  top-­‐class	
  
supercomputer,	
  
how	
  fast	
  can	
  we	
  
accelerate	
  next	
  
genera>on	
  big	
  
data	
  c.f.	
  Clouds?	


World-­‐leading	
  
results:	
  
-­‐  #1	
  Graph	
  500	
  

2014,	
  2015	
  
-­‐  #1	
  Green	
  Graph	
  

500	
  
(TsubameKFC)	
  

-­‐  GPU	
  sort	
  scalable	
  
to	
  ~30Petabyte/s	
  
on	
  future	
  SCs	
  

-­‐  OSSs	
  in	
  dev.	
  



The	
  Graph500	
  –	
  June	
  2014	
  and	
  June/Nov	
  2015	
  	
  
	
  K	
  Computer	
  #1	
  Tokyo	
  Tech[EBD	
  CREST]	
  Univ.	
  Kyushu	
  

[Fujisawa	
  Graph	
  CREST],	
  Riken	
  AICS,	
  Fujitsu 

List Rank GTEPS Implementation 

November 2013 4 5524.12  Top-down only 

June 2014 1 17977.05 Efficient hybrid 

November 2014 2 Efficient hybrid 

June/Nov 2015 1 38621.4 Hybrid + Node 
Compression 

*Problem size is 
weak scaling 

“Brain-class” graph 

88,000 nodes, 700,000 
CPU Cores 
1.6 Petabyte mem 
20GB/s Tofu NW 
 

≫ 

LLNL-IBM Sequoia 
1.6 million CPUs 
1.6 Petabyte mem 
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Communic
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TSUBAME3.0	


2006 TSUBAME1.0 
80 Teraflops, #1 Asia #7 World 
“Everybody’s Supercomputer”	


2010 TSUBAME2.0 
2.4 Petaflops #4 World 

“Greenest Production SC”	


2013 
TSUBAME2.5 

upgrade 
5.7PF DFP /
17.1PF SFP 
20% power 
reduction	


2013 TSUBAME-KFC 
#1 Green 500	


2017 TSUBAME3.0 
15~20PF(DFP) ~4PB/s Mem BW 
9~10GFlops/W power efficiency 
Big Data & Cloud Convergence 

Large Scale Simulation 
Big Data Analytics 

Industrial Apps	
2011	
  ACM	
  Gordon	
  Bell	
  Prize	


2017	
  Q1	
  TSUBAME3.0+2.5	
  Towards	
  Exa	
  &	
  Big	
  Data	
  
	


1.   “Everybody’s	
  Supercomputer”	
  –	
  High	
  Performance	
  (15~20	
  Petaflops,	
  ~4PB/s	
  Mem,	
  ~1Pbit/s	
  
NW),	
  innova:ve	
  high	
  cost/performance	
  packaging	
  &	
  design,	
  in	
  mere	
  100m2…	
  

2.   “Extreme	
  Green”	
  –	
  9~10GFlops/W	
  power-­‐efficient	
  architecture,	
  system-­‐wide	
  power	
  control,	
  
advanced	
  cooling,	
  future	
  energy	
  reservoir	
  load	
  leveling	
  &	
  energy	
  recovery	
  

3.   “Big	
  Data	
  Convergence”	
  –	
  Extreme	
  high	
  BW	
  &capacity,	
  deep	
  memory	
  
	
  hierarchy,	
  extreme	
  I/O	
  accelera:on,	
  Big	
  Data	
  SW	
  Stack	
  	
  
for	
  machine	
  learning	
  /DNN,	
  graph	
  processing,	
  …	
  

4.   “Cloud	
  SC”	
  –	
  dynamic	
  deployment,	
  container-­‐based	
  	
  
node	
  co-­‐loca:on	
  &	
  dynamic	
  configura:on,	
  resource	
  
elas:city,	
  assimila:on	
  of	
  public	
  clouds…	
  

5.   “Transparency”	
  -­‐	
  full	
  monitoring	
  &	
  	
  
user	
  visibility	
  of	
  machine	
  
&	
  job	
  state,	
  	
  
accountability	
  	
  
via	
  reproducibility	
  

43	




Big Data and HPC Convergent Infrastructure 
=> “Big Data & Supercomputing Convergent Center” （Tokyo Tech GSIC）	


•  “Big Data” currently processed managed by domain laboratories => No longer scalable 
•  HPCI HPC Center => Converged HPC and Big Data Science Center 
•  People convergence: domain scientists + data scientists + CS/Infrastructure => Big data science center 
•  Data services including large data handling, big data structures e.g. graphs, ML/DNN/AI services…	


2013 TSUBAME2.5 
Upgrade 

5.7Petaflops 17PF DNN	


2017Q1 TSUBAME3.0+2.5 upgrade 
Green&Big Data 100+PF DNN 

HPCI Leading Machine 
Ultra-fast memory 

network, I/O 
	


Mid-tier 
Parallel FS 

Storage  

Archival 
Long-Term  

Object Store 
 

Big	
  Data	
  Science	
  
Applica'ons	
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Na:onal	
  Labs	
  	
  
With	
  Data	


Present	
  old	
  style	
  data	
  science	
  
Domain	
  labs	
  segregated	
  data	
  facili'es	
  

No	
  mutual	
  collabora'ons	
  
Inefficient,	
  not	
  scalable	
  with	
  
Not	
  enough	
  data	
  scien'sts	


Convergence	
  of	
  
top-­‐>er	
  HPC	
  
and	
  Big	
  Data	
  
Infrastructure	


Data	
  
Management	
  
Big	
  Data	
  Storage	
  
Deep	
  Learning	
  
SW	
  Infrastructure	
  
	


Virtual	
  Mul>-­‐Ins>tu>onal	
  Data	
  Science	
  =>	
  People	
  Convergence	


Goal 100 Petabytes 

100Gbps	
  L2	
  
Connec'on	
  to	
  
commercial	
  clouds	


Main	
  reason:	
  We	
  
have	
  shared	
  
resource	
  HPC	
  
centers	
  but	
  no	
  

“Data	
  Center”	
  per	
  se	




New  collabora8ons  under  considera8on	

•  Fault	
  tolerance	
  towards	
  exascale	
  

•  Modeling	
  &	
  analyzing	
  sor	
  errors	
  with	
  “realis'c”	
  	
  
machine	
  fault	
  models	
  (Kobayashi)	
  

•  General	
  system-­‐level	
  GPU	
  checkpoin'ng	
  (Suzuki)	
  

• Big	
  Data	
  /	
  IoT	
  /	
  Machine	
  Learning-­‐AI	
  &	
  HPC	
  Convergence	
  
•  Modeling	
  deep	
  learning	
  algorithms	
  performance	
  (Ooyama)	
  
•  Counterpart	
  to	
  Tokyo	
  Tech	
  Extreme	
  Big	
  Data	
  (EBD)	
  Project	
  w/DENSO	
  

• Post-­‐Moore	
  compu'ng	
  
•  Programming	
  /	
  Performance	
  modeling	
  future	
  FPGAs	
  (also	
  w/Riken	
  
AICS	
  Naoya	
  Maruyama	
  (Hamid)	
  

•  FLOPS	
  to	
  BYTES	
  –	
  from	
  compute	
  intensive	
  to	
  bandwidth/capacity	
  
intensive	
  compu'ng	
  (w/Kengo	
  Nakajima,	
  Toshio	
  Endo	
  et.	
  al.)	
  

• ADAC	
  (Accelerated	
  Data	
  Analy'cs	
  and	
  Compu'ng)	
  Ins'tute	
  –	
  
ORNL	
  –	
  ETH/CSCS	
  –	
  Tokyo	
  Tech	
  GSIC	
  

To	
  be	
  
presented	
  @	
  
DoE/MEXT	
  
workshop)	



