i

O

Matsuc

ﬂ .
N
-
A -
o §
Q

> \

rofessor

itute of Technol

Tokyo Inst

Successful Model of DoE Lab / Tokyo
Tech Collaboration

* 1. Initial agreement on collaboration area w/DoE group
* Funding on both sides not mandated but desirable

e 2. Send a Ph.D. guyireapig student for short-term (2mo)
exploratory hatre=aber internship

* 3. Usually Tokyo Tech student performs extremely well =>
tangible collaborative research advance

4, Student asked back for longer-term (6 mo or greater)
more-hardlaber internship

* 5. Papers published, OSS deliverables, awards, ...

* 6. Student obtains Ph.D. => hired as postdoc at DoE Lab
(much higher salary than being hired in Japan!)

Tokyo Tech Collaboration Topics with g
DoE Labs in the recent years N

* Exascale Resiliece (Leonardo Bautista-Gomez@ANL,
Kento Sato@LLNL)

* Performance of OpenMP-MPI Hybrid Programming on
Many-Core (Abdelhalim Amer@ANL)

* Performance Visualization (Kevin Brown@LLNL)

* Performance Modeling of Tee Code with ASPEN
(Keisuke Fukuda@ORNL)

* Large-Scale Graph Store in NVM (Keita Iwabuchi@LLNL) &5

* OpenACC Data Layout Extensions (Tetsuya
Hoshino@ORNL)

* More to come...

“gsm = FTI: High Performance Fault Tolerance Interface

[SC11, EuroPar12 & Cluster12 (Leonardo Bautista-Gomez et al.)]
Internship at ANL => PostDoc at ANL

* Diskless checkpoint:

Create redundant data across local
storages on compute nodes using a
encoding technique such as Reed-
solomon, XOR

* Scalable by using distributed disks

Can restore lost checkpoints on a failure
caused by small # of nodes like RAID-5

Diskless checkpoint runtime library using Reed-Solomon encoding

Node 1

Node 2

Node 3

Node 4

LLNL-PRES-664262

> FTl implements a scalable Reed-
Solomon encoding algorithm by
utilizing local storages such as SSD

> FTl analyzes the topology of the
system and create encoding

Croup 1 Croups Groupd Croup 6 clusters that increase the

resilience

Performance (Teraflops)

140
120
100
80
60

N ———

20

0
384 768 1152

Number of GPUs

<& No checkpoint -¢- L1 *FTI-L1,L2
FTI-L1,L2,L3 +-BLCR+Lustre

»F Tl is a multilevel checkpointing library with 4 levels of reliability. It has over 8000
lines of c/c++ (with Fortran bindings) under GPL2.1.

.Download at http://www.github.com/leobago/fti and you can access the
documentation at http://leobago.github.io/fti

FTI discovers the location of the processes in the hardware and creates topology-
aware virtual rings to enhance reliability.

»FTI can protect dynamic datasets, where the size, pointers or structure of the dataset
changes during the runtime.

\F Tl offers the option to dedicate one process per node for fault tolerance to minimize
the checkpoint overhead.

»While using dedicated processes for asynchronous tasks FTI allows the user to do a
fine-grained selection about the tasks to offload.

»While using dedicated processes, FTI splits the global communicator and returns a
new communicator to isolate the FT-dedicate ranks.

F Tl monitors the timestep length and can dynamically adapt the checkpointing
interval during runtime, keeping a consistent state.

»Applications ported: HACC, CESM (ice module), LAMMPS, GYSELASD,
SPECFEM3D (CUDA version), HYDRO.

Local Storage: SSD, PCM, NVM.
Fastest checkpoint level.
Low reliability, transient failures.

Partner Copy: Ckpt. Replication.
Fast copy to neighbor node.
It tolerates single node crashes.

RS Encoding: Ckpt. Encoding.
Slow for large checkppoints.
Reliable, multiple node crashes.

File System: Classic Ckpt.
Slowest of all levels.
The most reliable. Power outage.

int main(int argc, char **argv) {

MPI_Init(&argc, &argv);
FTL_Init(“conf.fti”, MPI_COMM_WORLD);

double *grid;

int i, steps=500, size=10000;
initialize(grid);

FTI_Protect(0, &i, 1, FTIL_INTG);
FTI_Protect(1, grid, size,FTI_DFLT);

for (i=0; i<steps; i++) {
FTI_Snapshot();
kernel1(grid);
kernel2(grid);
comms(FTI_COMM_WORLD);

}

FTI_Finalize();
MPI1_Finalize();
return O;

N
o

9 Weak Scaling Checkpointing
35~
T Overhead
30_d:>
.Weak scaling to ~10k proc. #%
,CURIE supercomputer in France %o
,SSD on the compute nodes 158
,HYDRO scientific application 10g
»Checkpointing every ~6 minutes 5§ — A : S
S ‘
° 6;0 1 2‘00 2400 4800 7200 9600
=&=No ckpt. =#=FTI L1 FTIL2 =>¢=FTIL3 ===FTIL4 PFS ckpt.
"Weak scaling on MIRA (BG\Q) — — — —
,LAMMPS, Lennard-Jones o QOde o ORAN SRA.M PClEXpress
_ , . ore Network Optics
simulation of 1.3 billion atoms 3) R
912 nodes, 64 MPI| processes per _ 3!
node (32,678 processes) E 24F
»Power monitoring and checkpoint N 20| o
every ~5 minutes 0 %g
,Less than 5% overhead on time to E 1l
completion * 4

0 300 600 900 1200 1500 1800 2100 2400
Time (s)

Extreme-Scale Resilience for Billion-Way Parallelism

» Coordinators
— US: Kento Sato, Kathryn Mohror, Adam Moody,
Todd Gambilin, Bronis R. de Sipinski (LLNL)
— JP: Satoshi Matsuok (Tokyo Tech), Naoya
Maruyama (RIKEN)
Description
— The Tokyo Tech group creates resilience APIs
for transparent and fast recovery, resilience
modeling for optimizing environment, and
resilience architecture for scalable and reliable
checkpoint/restart, then feeds back to SCR, the
production resilience library developed at LLNL.
The production library will be deployed in
TSUBAME3.0
How to collaborate
— Biweekly meeting
— Student / young researchers exchange
Deliverables
— Pre-standardization of Resilience API
— Production resilience interface, SCR

Kento Sato
LLNL Internship
Now LLNL PostDoc

LLNL-PRES-665006

Scalable Checkpoint/Restart

Resilience APIs

- ,,i Compute nodes

Resilience Modeling
o

d_&ﬂ Burst buffersr ‘

(—
" Resilience Architecture: =

i

Stable LS?LL*LL* i
.« | Parallel file system ‘

Storage

b Feedback to production q

« Schedule (DRAFT)

2015 | 2016 | 2017 | 2018 | 2019 | 200

Qe Q@QQ@aaeaacQ@Q@aaeaacQ@qQ@aeaaecQ@qQ@aaeQ@a@@aaa
1 2 3 41 2 3 4 1 2 3 4 1 2 3 41 2 3 4 1 2 3 4

TSUBAME2.5 TSUBAMES.0 « TSUBAMES.X ~
H L L
Pre-standardized API > Standardized API -~

T

Continuous update to production software upon feedbacks

v

FMI: Fault Tolerant Messaging Interface

[IPDPS2014, Kento Sato et al.]

Example code & Evaluation

FMI example code

int main (int *argc, char *argv[]) { » FMI_Loop enables transparent recovery and roll-
FMI Init (&argc, &argv); back on a failure
FMI Comm rank (FMI COMM WORLD, é&rank);

/* Application’s initialization */ . _
while ((n = FMI Loop(.)) < numloop) { — Restore the last checkpoint on a failure

/* Application’s program */
}

/* Application’s finalization */

— Periodically write a checkpoint

FMI Finalize () ; P2P communication performance
} 1-byte Latency | Bandwidth (8MB)
2500 MPI 3.555 usec 3.227 GB/s
~A—-MPI FMI 3.573 usec 3.211 GB/s
= MPI +C
S 1500 ~=-FMI + C FMI directly writes checkpoints
g FMI + C/R 4 via memcpy, and can exploit the
& 1000 bandwidth
g8
& 500 7= | MTBEF: 1 minute]’
e | Even with the high failure rate,

' | FMI incurs only a 28% overhead
0 500 1000 1500

of Processes (12 processes/node)
LLNL-PRES-665006

Design and Modeling of Async. Checkpointing

[SC12, Kento Sato et al.]

3%

. . e : 0

« Objective: Minimize checkpoint overhead to PFS
o Minimize CPU usage, memory and network bandwidth

 Proposed method: Implementation and modeling
Non-blocking checkpointing

o Asynchronously write checkpoints to PFS through Staging nodes using
RDMA

o Determine the optimal checkpoint interval on the asynchronous
checkpoint scheme

Async. checkpointing model

8-12% of failures still
requires PFS checkpoint

\\\//'
Failure analysis on TSUBAMEZ2.0

90% of efficiency in most cases

Incomplete Complete Incomplete Complete
segment 1 segment 2 segment 2 segment 3 1
)\
[W W\ \ \ 09
@ a 08 1 B |2 cost x1 / Non-blocking
0.7

M |2 cost x1 / Blocking

>0.6 =)
2 L2 cost x2 / Non-blocking
Los t
- & 27 =
L20 &—-———= |JI|—"rt £ L2 cost x2 / Blocking

TTT AR ARl T =l “oa —

| Computation state followed by L2 cost x10 / Non-blocking

| level-x checkpoint 0.3 —

| L2 cost x10 / Blocking

! Recovery state from level-x 0.2

: checkpoint

' .

1 Transition to a recovery state 01

: < by level-2 failure 0

! e .

L2-1: <€ Transition to a computation Failure rate x1 Failure rate x2 Failure rate x10

| state by level-2 recovery

| | I

[

LLNL-PRES-665006

Burst Buffers for Resilient Checkpoint/Restart

[CCGrid2014 (Best Paper Award), Kento Sato et al.]

Provide POSIX-like I/O interfaces
— open, read, write and close
— Client can open any files on any servers
IBIO use ibverbs for communication between

clients and servers
— Exploit network bandwidth of infiniBand

QIEEE & T &gy,

4.5
4
3.5

Read/Write throughput (GB/sec)

==t ==Read - NFS
==j == Write - NFS

e==f}==Read - IBIO
el Write - IBIO

—#=— Read - Local

== Write - Local

Read - Peak
Write - Peak

0 2 4 6 8 10 12 14 16

of Processes

LLNL-PRES-665006

mSATA X 8
(Read: 500MB/s,
Write: 260MB/s)

CCGrid2014 Best Paper

Award
(Kento Sato, Kathryn Mohror, Adam Moody,
Todd Gamblin, Bronis R. de Supinski, Naoya
Maruyama & Satoshi Matsuoka)

B Lawrence Livermore
National Laboratory

Adaptec RAID X
1

EBD I/0

Node specification

CPU Intel Core i7-3770K CPU (3.50GHz x 4 cores)
Memory Cetus DDR3-1600 (16GB)

M/B GIGABYTE GA-Z77X-UD5H

SSD Crucial m4 msata 256GB CT256M4SSD3

(Peak read: SOOMB/s, Peak write: 260MB/s)

SATA converter

KOUTECH I0-ASS110 mSATA to 2.5 SATA
Device Converter with Metal Fram

RAID Card

Adaptec RAID 7805Q ASR-7805Q Single

Interconnect :Mellanox FDR HCA (Model No.: MCX354A-FCBT)

11

Burst Buffers for Resilient Checkpoint/Restart

[CCGrid2014 (Best Paper Award), Kento Sato et al.]

Resilience modeling overview

To find out the best checkpoint/restart strategy for systems with burst buffers, we model checkpointing strategies

C/R strategy model Recursive structured storage model
..... Hj-]
C;+ E; (Sync.) q | — I

— —_— 1
0;= Li=G+ E;
I (Async.) ‘ . m=
1=0 i>0
< C/R date size / node >x <# of C/R nodes per S;" > Storage Model- Hy, {mz; my, ..., mN}
Cj or R1 =
< write perf. (w;) > or <read perf. (r;)>
Flat Buffer-Coordinated Flat Buffer-Uncoordinated
¥ Burst Buffer-Coordinated M Burst Buffer-Uncoordinated
1
MLC model 0.9
0.8
Duration 0.7
t+c,
No (1{)_> Po(t+c,) Po(r) 3 0.6
failure J ty(t+c,) e ’J 1, (1) 5 0.5
.| pt+e) pin) S

Failure ®_> 1] t(t+c,) @‘»1 l 1,(n) E 0.4
0.3
T Interval T)(;) - ;’*T {PO(T) : No failure for T seconds o2

Ce: clevel checkpoint time 4OET; : &(1 ooy t,(T) : Expected time when Po (T) '
Te : ¢-level recovery time P > AT 41). AT {Pi(T) : 1- level failure for T'seconds 0.1
A j-level checkpoint time a1 = A (1—e2T) t(T): Expected time when pi(T) 0

1 2 10 50 100

Scale factor (xF, xL.2)

LLNL-PRES-665006 12

Publications IEEE/ACM CCGrid2014

Best Paper Award

+ Kento Sato, Kathryn Mohror, Adam Moody, Todd Gamblin,
Bronis R. de Supinski, Naoya Maruyama and Satoshi YRy prra—
Matsuoka, "A User-level InfiniBand-based File System
and Checkpoint Strategy for Burst Buffers", In Proceedings
of the 14" IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid2014), Chicago, USA,
May, 2014. (Best Paper Award !!)

+ Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshl
Matsuoka, "FMI: Fault Tolerant Messaging Interface for Fast and Transparent Recovery", In Proceedings of the
International Conference on Parallel and Distributed Processing Symposium 2014 (IPDPS2014), Phoenix, USA, May,
2014.

+ Kento Sato, Satoshi Matsuoka, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski and Naoya
Maruyama, "Burst SSD Buffer: Checkpoint Strategy at Extreme Scale", IPSJ SIG Technical Reports 2013-HPC-141,
Okinawa, Sep, 2013

+ Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi
Matsuoka, "Design and Modeling of a Non-blocking Checkpointing System", In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis 2012 (SC12), Salt Lake, USA, Nov,
2012.

+ Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi
Matsuoka, "Towards a Light-weight Non-blocking Checkpointing System", In HPC in Asia Workshop in conjunction
with the International Supercomputing Conference (ISC'12), Hamburg, Germany, June, 2012 (Poster)

+ Kento Sato,Adam Moody,Kathryn Mohror,Todd Gamblin,Bronis R. de Supinski, Naoya Maruyama and Satoshi
Matsuoka, "Design and Modeling of a Non-Blocking Checkpoint System", In ATIP - A*CRC Workshop on Accelerator
Technologies in High Performance Computing, Singapore, March, 2012. (Poster)

+ Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi
Matsuoka, "Design and Modeling of an Asynchronous Checkpointing System", IPSJ SIG Technical Reports 2012-
HPC-135 (SWoPP 2012), Tottori, Aug, 2012.

+ Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi
Matsuoka, "Towards an Asynchronous Checkpointing System", IPSJ SIG Technical Reports 2011-ARC-197 2011-
HPC-132 (HOKKE-19), Hokkaido, Nov, 2011.

SC11 Technical Paper
J—— Perfect Score Award

Lﬂ:l:::c]:";c:n:rg Bautista Gomez (Leonardo Batista Gomez, Seiji
i i Tsuboi, Dimitri Komatitsch, Frank
Cappello, Naoya Maruyama &
Satos,hi Matsuoka)

for achi
revi

software

FP Compression
[Submitted to IPDPS2(

FTI: Fault Tolerance Interface
[SC11, EuroPar12, Cluster12]

FMI: Fault Tolerant Messaging Interface
[IPDPS2014]

—‘:E

Architecture Burst buffer architecture
[CCGrid 2014]

Fault-in-Place Network Architecture

[SC14]

Tokyo Tech Billion Way Relience Project -

CCGrid2014 Best Paper
Award

(Kento Sato, Kathryn Mohror, Adam Moody,
odd Gamblin, Bronis R. de Supinski, Naoya
Maruyama & Satoshi Matsuoka)

B Lawrence Livermore
National Laboratory

Async. Model
[SC12]

-z 1
Analysis Failure Monitoring
[ITPSJ Tech Report]

Standardization of
failure log

NVM Energy Model
[FTXS2013]

- Storage Model
[CCGrid2014]

NVM Durability model

Failure Prediction

Failure Analysis
w/ Machine Learning

5.
OpenMP-MPI Performance collaboration w/ANL - ‘

Abdelhalim Amer
= Visits
— Abdelhalim Amer, PhD. Student at Tokyo
Institute of Technology

— Sept 2013 — Nov 2013 (Tokyo Tech > ANL)

e Characterizing lock contention in multithreaded
MPI applications

— Nov 2013 — Apr 2013 (ANL = Tokyo Tech)

* Develop hybrid MPI kernels relying on
multithreaded communication

— Apr 2014 - Sep2014 (Tokyo Tech = ANL)
* Large scale analysis of hybrid MPI graph traversal kernels

.\\\\

Abdelhalim Amer (Halim)
Postdoctoral Researcher, ANL

e Characterize and mitigate thread arbitration issues to enhance communication
progress

— Apr 2015 ~: Postdoc at ANL. Planning for future collaborations/visits
= Qutcome

— Two publications (PPoPP’15 and PPMM’)

— Software contribution to the MPICH library

— Ongoing collaboration

15

ursuing Excellence

Research and Achievements Summary —,a,7a-/,_:ﬂ,_

®

z, E Pros and Cons of MPI+Threads at Characterizing Large Scale MPI +
S S Large Scale? Threads [PPMM’15]

B 3
® . L

EE Runtime Contention in Reducing Contention by

= Multithreaded MPI due to Improving Critical Section

Z o Thread-Safety Arbitration [ACM PPoPP’ 15]

= Characterizing state-of-the-art MPI+Threads runtimes
— Application and runtime perspectives
— Large scale analysis (512K cores on Mira)
= Exposing thread-synchronization issues the MPI-runtime
= Develop MPIl-aware thread-synchronization to improve runtime performance

[ACM PPOPP’15] Abdelhalim Amer, Huiwei Lu, Yanjie Wei, Pavan Balaji and
Satoshi Matsuoka. MPI+Threads: Runtime Contention and Remedies. ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP)

[PPMM’15] Abdelhalim Amer, Huiwei Lu, Pavan Balaji, and Satoshi Matsuoka.
Characterizing MPI and Hybrid MPI+Threads Applications at Scale: Case Study with
BFS. Workshop on Parallel Programming Model for the Masses (PPMM)

. — s
Large-Scale MPI+Threads Graph Analytics | —m,(fg- e T

Characterization on BG/Q [PPMM’15]

.

Core-to-Core vs. Node-to-

Node Data Movement:

* MPI+Threads does better
but cannot do miracles!

=—Processes

=#-Hybrid

w

—

o

L)
*s

This small, synthetic graph was

Performance (GTEPS)
N
O 01— N O W o b~ O

128 1024 8192 65536 524288 generated by a method called
- K k ltiplication. (J iah
Numberof Gorss - Process-level scalability S
optimizations:
. MPI+Threads oe
y ——MPI-Only experiences overheads & ——Processes+LP+IB
7 —#=Hybrid 8. 20 ~B-Hybrid+LP+IB
& 12 —4—\IPI-Only-Optmized i ybri
5 10 =>=Hybrid-Optmized 915 =k—Hybrid+LP+IB+FG
8 3
g 8 S 10
£ 6 £
‘g 4 ‘g 5
[4] ()
0 Thread-synchronization 0

128 1024 8192 65536 524288 optimization: 128 1024 8192 65536 524288

. . . N b fC
Number of Cores R Flne-gramed Iocklng umber of Cores

Communication Progress anFI Thread-SynShromza on: E———— -y
Beware of Unbounded-Unfairness [PPoPP’15] pursuing Excellence
Adapt arbitration to maximize work Pthread Mutex | L vnonae /-

CS_ENTER

= FIFO locks overcome the
shortcomings of mutexes

= Polling for progress can be wasteful
(waiting does not generate work!) FIFO Lock —3 Time
" Prioritizing issuing operations | ey
* Feed the communication pipeline : E.S : ls :KE; Lo
. | : P CS_EXIT
* Reduce chances of wasteful internal - —>
process (e.g. more requests on the fly Fairness (FIFO) reduces wasted J/wecauexit /-
=>» higher chances of making resource acquisitions
524288 @ —B-Ticket
w g 256 =4 Priority
o =
> 262144 g
" 2 64
g 2
= ——Mutex o
g X
% 191072 —Ticket m 16
x —Priority
4
65536
Message Size (Bytes) Number of Cores

Message Rate between two 36

Haswell.cores nodes SWAP-Assembler Genome assembly application

Insightful Analysis of Performance Metrics on
Fat-tree Networks[Kevin Brown, ICPADS15]

@ [| | =« [Non-intrusive collection of

Profiler

'\ Open MPI openwp . performance metrics w/

am G 20 ouribprof profiler
8 network P B network B
:: a b 5 ;- * Low overhead
.processl . b 2 15 i cacs” : e Captures links traffic
network communication process 2 P
profile
Hardware-centric -~ S
traffic visualization Y =
BoxFish for FatTree /o =
~switches®,
.___compute
nodes .

Tree-topology viz. design

Insightful Analysis of Performance Metrics
on Fat-tree Networks

@ Tree-topology viz. design —> Adjacency matrix viz. design

T

P P e P PP P I
BRI I I
VUL gy g by Iy ag g

Each element represents a link
v No occlusion of data

v’ Space efficient design

v" More link design options

Square
Triangle pair I
Bisected square gy

Data (traffic, load, etc.) is encoded in the size, shape, color, and/or hue of the links

Overhead (%)

Overhead (%)

80

60

40

20

ibprof’s Profiling Overhead

InteI I\/IPI Benchmarks

| —A— alltoall —m— scatter
| —@— gather —— allgather
| —— allreduce

-~ —@— bcast(avg: 11.6)

—m— reducéavgl 34)
—O— ping-pong

9l 95 510 915 920 923
Message Size (bytes)

NAS Parallel Benchmarks

0.6 ' 56ms
0.4 —|
0 - |:| /= [
I — %
—0.4 -39ms
|:||:|kerne1
—06r [0 pseud
C3oms pseudo app

ft is €€ mg bt SP lu
Kernels & Psuedo Apps

All NPB apps averaged < 1%

Peak overhead occurred with
MPI_Bcast when Open MPI
switched from send/recv to RDMA
All other collectives averaged < 5%

21

Process-centric Visualizations vs. Boxfish

THREAD 1.1.1

THREAD 1.9.1

THREAD 1.17.1

THREAD 1.25.1 [#

THREAD 1.33.1

THREAD 1.41.1

THREAD 1.49.1

THREAD 1.57.1

THREAD 1.65.1

THREAD 1.73.1

THREAD 1.81.1

THREAD 1.%9.1

THREAD 1.97.1

THREAD 1.105.1

THREAD 1.113.1

THREAD 1.121.1

THREAD 1.128.1

Paraver

(AL

i
I

'III 'ﬂ i

i

Fat Tree Visualization

Samplesort on 128 nodes of TSUBAME2.5

MPI call @ ssortl28osl.prv

ssort128-01_meta.yaml | Fat Tree - 2D View

VS.

—— . Level 1b
= Z—_/ Level 2b
= Level 3b

Boxfish

Does not show network Capable of highlighting network
traffic hotspots hotspots and traffic patterns 2

Visualizing the Traffic Patterns of Different
Open MPI Library version

= Open MPI v1.65 balances
W traffic over both subnets
- ofTSUBAME?2.5 with the
il default configuration

(i
A4

-7 ';/\/\“\'-.\ \
< N N
7 o 5\(

i

Open MPI v1.82 uses a single
subnet per operation with the
default configurations on ! OOOOOOOOO
TSUBAME2.5 M.

Publications

Poster (Prior to internship but using LLNL’s work):

Kevin A. Brown, Jens Domke, and Satoshi Matsuoka. “Tracing
Data Movements within MPI Collectives”. In Proceedings of
the 21st European MPI Users' Group Meeting (EuroMPI/ASIA
'14).

Paper:

Brown, K.A.; Domke, J.; Matsuoka, S., "Hardware-Centric
Analysis of Network Performance for MPI Applications”. In
2015 IEEE 21st International Conference on Parallel and
Distributed Systems (ICPADS)

Challenges to model a tree-based irregular
applications with Aspen

Keisuke Fukuda (Ph.D Student)

Research Internship @ORNL
* 2013 Sep-Nov
* 2014 Oct-Nov

* Now long-term intern at AICS 2015 Oct-2016 Sep

Challenges in modeling irregular applications

* Performance modeling of application is used to:
* Runtime (power, memory) estimation
* Hardware/machine design

e Conventional, ad-hoc mathematical modeling is not suitable if irregular data
structure (e.g. tree) and control flows affect the performance

* How to model such applications?
* We focus on the Fast Multipole Method

Examples of tree shapes

Each plot point represents
a particular shape of tree

Performance variation
caused by “shape” of a tree
for a fixed number of particles

3
o,
Q2
£ i
= Lattice
1 Plummer
0
0 200 400 600

Ncrit

(this figure will be shown and
described again)

* Applied Aspen modeling language to FMM

* Runtime estimation for lattice, sphere, plummer distribution,
Ncrit =16~512

* Estimation errror was 7-13% error in avg.

 Room for optimization for find-grained kernels and in
deriving constants

* Aspen requires large time and memory to evaluate the
models

Whole-app model of ExaFMM

Aspen Model vs. Actual runtime

000 particles

’

Lattice distribution 50

0.6

Ncrit

Error: avg 7.7%, max 33.2%, min 3.7%

Whole-app model of ExaFMM

Aspen Model vs. Actual runtime
Sphere distribution 50,000 particles

B Model

B Actual

Error: avg 12.8%, max 26.9%, min 4.0%

Distributed Large-Scale Dynamic Graph Data Store

Keita Iwabuchi’- 2, Scott Sallinen3, Roger Pearce?,
Brian Van Essen?, Maya Gokhale?, Satoshi Matsuoka1
1. Tokyo Institute of Technology (Tokyo Tech) o hg‘ggﬂ;ﬁé—gg;?o?;e

2. Lawrence Livermore National Laboratory (LLNL) . jieceor i
/ 3. University of British Columbia W& ™77

fﬂl(/ﬂ /"I =CH—

Dynamic Graphs (temporal graph) Sparse Large Scale-free

« the structure of a graph « social network, genome
changes dynamically over time analysis, WW\W, etc.

* many real-world graphs are « e.g., Facebook manages
Classmed into dyna,_m,lc graph 1.39 billion active users

as of 2014, with more
than 400 billion edgesjt 3

* Most studies for Iarge graphs have not focused on a dynamic
graph data structure, but rather a static one, such as Graph 500

« Even with the large memory capacities of HPC systems, many
graph applications require additional out-of-core memory

(this part is still at an early stage)

Developing a distributed dynamic graph store for data intensive
supercomputers equipped with locally attached NVRAM

Comp. Comp. Comp.
Node Node Node

Graph Application

Streaming edges

=

Sy
: ; ;

{

' !

—————————

Distributed Dynamic Graph Data
Store

Degree Aware Dynamic Graph Data Store
Degree aware data st@@%%@ﬁb‘héegree vertices are

compactly represented

Use Robin Hood Hashing!!l because of its locality properties to
minimize the number of accesses to NVRAM, reducing page misses.

Each table is
composed of Robin
Hood Hashing

l

Low-degree
{v2,v4 tlaflubov4
w1 w3 } }
w3 w4
y Mid-high degree table
vl | v4
w2 w6 v2 | v3
w1l |w2|| 1| vy3
Vertex ID \ w5 | wb
| | |
. Edge weight Extend DegAwareRHH for distributed-memory using a async.

MPI communication framework!2!(3!

[2] R. Pearce, et al, “Scaling techniques for massive scale-free graphs in distributed (external) memory,”

IPDPS’ 13

Better =

Million Requests/sec.
[
(@)

o

Dynamic Large-Scale Graph Construction (on-memory)

STINGER: a state-of-the-art shared-memory dynamic graph
processing framework developing at Georgia Tech
Baseline: a baseline model using Boost.Interprocess

our proposed dynamic graph store

Edge insertion and deletion
(single node, 24 threads/processes)
_total #edges: 1 billion

N
192

N
o
T

=
oL

16x than

Baseline
STINGER Baseline DegAwareRHH

Ul
T

Due to a skewness of the data set (RMAT
graph), DegAwareRHH overperforms the both
implementations significantly

Edge insertion
total #edges: 128 billion

82'5 over 2 billion |-
© 201 insertions/ | 1
B15 ~sec. . _*

“| overperform
pa s Baseline
S by 30.69 %

oago—. ..]
0 20 40 60 80 100 120 140

#nodes (24 processes per node)

Publication list

Keita Iwabuchi, Roger A. Pearce, Brian Van Essen, Maya Gokhale, Satoshi Matsuoka,
“Design of a NVRAM Specialized Degree Aware Dynamic Graph Data Structure”, SC
2015 Regular, Electronic, and Educational Poster, International Conference for High
Performance Computing, Networking, Storage and Analysis 2015 (SC’15), Nov. 2015
Keita Iwabuchi, Roger A. Pearce, Brian Van Essen, Maya Gokhale, Satoshi Matsuoka,
“Design of a NVRAM Specialized Degree Aware Dynamic Graph Data Structure”, 7th
Annual Non-Volatile Memories Workshop 2016, Mar. 2016

An OpenACC Extension for Data Layout
Transformation w/ORNL

Tetsuya Hoshino(Ph.D Student)
Research Internship @ORNL 2014 Sep-Nov

Now: Assistant Professor @ Supercomputing Center,
The University of Tokyo

Why the extension is needed?

Viscosity and Convection phases

1
0.9
§ 0.8
2 0.7
17
qé 0.6 M Intel Xeon
® o5 (6 core)
°
€04 K20X GPU
=
© 0.3
(7]
o
o 0.2
0.1
0

Original AoS SoA

The graph shows the result of manual data layout
transformation for the viscosity and convection
phases of a real-world CFD application UPACS

(Hoshino et al. “CUDA vs OpenACC: Performance Case Studies with
Kernel Benchmarks and a Memory-Bound CFD Application”, CCGrid13)

* An OpenACC program can be

executed on any devices
— multi-core CPU, Xeon Phi, GPUs

OpenACC target devices have
different performance
characteristics especially about
memory access

— ex. SoA and AoS

Data layout of real-world
applications is complicated and
is shared in the whole program

— Auto-tuning is required

An OpenACC extension
#pragma acc transform

* Specification
#pragma acc transform [clause [[,] clause] ...] new-line
structured block

* Clause list
— transpose(array_name::transpose rule)

e for multi-dimensional array

o A[Z][YI[X][3] = A’[3][Z][Y][X] (transpose rule ::[4,1,2,3])
— redim(array_name::redim _rule)

e for 1 dimensional array

e B[Z*Y*X*3] = B’[Z][Y][X][3] = B”[3][Z][Y][X] (by transpose clause)
— expand(derived type array name)

» for array of structures

e C[Z][Y1[X].c[3] = C[ZIIYIIXI[3] = C”’[3][Z][Y][X] (by transpose clause)

Collaborate with ORNL

* Implement the directive top on OpenARC that is an Open-source
OpenACC compiler developed by ORNL
— Source-to-Source translator

* Input : Extended OpenACC program
* Qutput : OpenACC program

— It is on going work

Our Translator

OpenARC
.C input eaerates analyze transform output -C
P & AST directives structures P

Extended OpenACC
OpenACC

Evaluate with Himeno benchmark
(27-point stencil program)

Apply transpose to
coefficient arrays of

M Intel Xeon (12cores)

1.2
Intel Xeon Phi

Himeno benchmark

M NVIDIA K20X GPU

1)

— But the transformation is
applied by hands

— Transformed program is
same as the output program
that OpenARC should output

Performance evaluation

— CPU : Original is the best

— GPU :24% up

0.6 -

Relative performance (Original

0.2
— MIC : more than 60% down
* Translator change the 0 -
coefficient multidimensional Original AIZJIYIIXI[4] A[ZIIYII4IIX] ALZI[A1YIIX] AT4IIZ]IV]IX]
array to 1-dimensional array, (s (14 is
innermost) outermost)

it disturbs prefetching

Lessons Learned

* Sending actual Ph.D. students to DoE labs extremely
productive for both sides for tangible collabration

* Tokyo Tech Ph.D. students are extremely good and well
trained by global standards — they usually survive the
filtering of summer interns and produce tangible results

* Many students end up being hired by DoE labs. Others
go to Japanese univ. & labs, etc. => great talent pool

* Some administrative obstacles, esp. travel and funding
from both ends — need more flexibility in purpose,
airlines, gaps in travel itinerary, etc.

Tokyo Tech Research on Big Data Convergence
JST-CREST “Extreme Big Data” Project (2013-2018)

Future Extreme Big Data Scientific Apps

Ul'rr'a Large Scale
Graphs and Social

Massive Sensors and

Lar‘ge Scale -

nfrastructures Data Assimilati
Given a tOp'CIGSS Metagenomics S - V;egfh:i ?;ecéllg:(;: esults_
supercomputer, ; d - #1Graph 500
== _EBD System Software 2014, 2015
how fast can we Q «.-, e incl. EBD Object System - #1 Green Graph
accelerate next P | o 500
generation big asca,e Big Data HPC (TsubameKFC)
! [~

data c.f. Clouds?

Convergent Architecture (Phases 1~4)) GP:;SO‘IJJ” S(;’alab/l €
Large Capac:fy NVM, High-Bisection NW to etabyte/s
Cloud IDC

s W on future SCs
|| - OSSs in dev.
Very low BW & Efficiency ﬁq ”

Supercomputers
Highly available, resilient Computz&BaTcE—Or‘ienTed

More fragile

The Graph500 — June 2014 and June/Nov 2015
K Computer #1 Tokyo Tech[EBD CREST] Univ. Kyushu
[Fuusawa Graph CREST], Riken AICS, Fujitsu

88,000 nodes, 700,000

173% total exec CPU Cores
14 communic = fime W?"[ok 1.6 Petabyte mem 1 PP
1000 communication 20GB/s Tofu NW | ., %t

64 nodes 65536
(Scale 30) nodes

(Scale 40)
LLNL-IBM Sequoia

) 1.6 Petabyte mem ====
November 2013 5524.12 Top-down only weak scaling _
“Brain-class” graph

o

Elapsed Time
(ms)
6))
o
o

June 2014 1 17977.05 Efficient hybrid
November 2014 2 Efficient hybrid
June/Nov 2015 1 38621.4 Hybrid + Node

Compression

2017 Q1 TSUBAME3.0+2.5 Towards Exa & Big Data

. “Everybody’s Supercomputer” — High Performance (15~20 Petaflops, “4PB/s Mem, ~1Pbit/s
NW), innovative high cost/performance packaging & design, in mere 100m?...

. “Extreme Green” — 9~10GFlops/W power-efficient architecture, system-wide power control,

advanced cooling, future energy reservoir load leveling & energy recovery | ,| = “ H o B
. “Big Data Convergence” — Extreme high BW &capacity, deep memory | E |
hierarchy, extreme 1/0 acceleration, Big Data SW Stack 2013 | | H e |
for machine learning /DNN, graph processing TSUBAME2.5 il B
’ re upgrade ‘ i iRl i
. “Cloud SC” — dynamic deployment, container-based 5.7PF DFP / 2017 TSUBAME3.0
node co-location & dynamic configuration, resource 17'3 PF SFP 15~20PF(DFP) ~4PB/s Mem BW
B 20% power 9~10GFlops/W power efficiency

elasticity, assimilation of public clouds... reduction Big Data & Cloud Convergence
. “Transparency” - full monitoring & o
user visibility of machine
& job state, '
accountability

via reproducibility ;

facebok 3

2010 TSUBAMEZ2.0
2.4 Petaflops #4 World
“Greenest Production SC”

Large Scale Slmulatlon
2013 TSUBAME-KFC Big Data Analytics

#1 Green 500 Industrial Apps

2006 TSUBAME1.0
80 Teraflops, #1 Asia #7 World | ===

Everybody’s Supercomputer 2011 ACM Gordon Bell Prize

43 4

Big Data and HPC Convergent Infrastructure

=> “Big Data & Supercomputing Convergent Center’

- “Big Data” currently processed managed by domain laboratories => No longer scalable

« HPCI HPC Center => Converged HPC and Big Data Science Center

 People convergence: domain scientists + data scientists + CS/Infrastructure => Big data science center
Data services including large data handling, big data structures e.g. graphs, ML/DNN/AI services...

Present old style data science
Domain labs segregated data facilities
No mutual collaborations
Inefficient, not scalable with
Not enough data scientists

2017Q1 TSUBAME3.0+2.5 upgrade
Green&Big Data 100+PF DNN
+ HPCI Leading Machine
Ultra-fast memory
network, 1/0

2013 TSUBAME2.5
Upgrade
5.7Petaflops 17PF DNN

Main reason: We
have shared
resource HPC
centers but no
“Data Center” per se

National Labs
With Data

Big Data Science
Applications

Virtual Multi-Institutional Data Science => People Convergence

[
Convergence of :
top-tier HPC
and Big Data : éOOGbij L2
Infrastructure I Archival onnection to
1 Long-Term commercial clouds
| Object Store T
N e o o —G9al 100 Potabytes’ “"amazon

“" webservices™

New collaborations under consideration

* Fault tolerance towards exascale

* Modeling & analyzing soft errors with “realistic” presented @
machine fault models (Kobayashi) DoE/MEXT

 General system-level GPU checkpointing (Suzuki) workshop)

* Big Data / loT / Machine Learning-Al & HPC Convergence

* Modeling deep learning algorithms performance (Ooyama)

e Counterpart to Tokyo Tech Extreme Big Data (EBD) Project w/DENSO
* Post-Moore computing

To be

* Programming / Performance modeling future FPGAs (also w/Riken
AICS Naoya Maruyama (Hamid)

* FLOPS to BYTES — from compute intensive to bandwidth/capacity
intensive computing (w/Kengo Nakajima, Toshio Endo et. al.)

ADAC (Accelerated Data Analytics and Computing) Institute —
ORNL — ETH/CSCS — Tokyo Tech GSIC

