
Frameworks for Large-scale

parallel simulations

Jun Makino
RIKEN Advanced Institute for Computational Science (AICS)

Talk Overview
• Who am I and what am I doing here?

• Framework for particle-based simulations

• Framework for grid-based simulations

• Summary

Team leader, Co-design team,

Flagship 2020 project.

Official words: The mission of the Co-design team is to
organize the ”co-design” between the hardware and software
of the exascale system. It is unpractical to design the many-
core complex processor of today without taking into account
the requirement of applications. At the same time, it is also
unrealistic to develop applications without taking into account
the characteristics of the processors on which it will run. The
term ”Co-design” means we will modify both hardware and
software to resolve bottlenecks and achieve best performance.

In a bit more simpler words...
• Today’s microprocessors have become very com-
plex.

• As a result, to develop applications which run ef-
ficiently on today’s processor has become almost
impossible.

• To make the impossible somewhat less impossible,
in the early phase of the microprocessor design,
predict what problems will occur and fix them if
at all possible.

Team leader, particle simulator

research team.

This one I have been involved since 2012.
Simulation methods for hydrodynamics and structural anal-

ysis can be divided into grid-based and particle-based methods.
In the latter case, physical values are assigned to particles,
while the partial differential equation is approximated by the in-
teractions between particles. Particle-based methods have been
used to study phenomena ranging in scale from the molecular to
the entire Universe. Historically, software programs for these
applications have been developed independently, even though
they share many attributes. We are currently developing a
“ universal” software application that can be applied to prob-
lems encompassing molecules to the Universe, and yet runs ef-
ficiently on highly parallel computers such as the K computer.

What do we actually do?
We have developed and are maintaining FDPS (Frame-

work for Developing Particle Simulator).

1. What we (don’t) want to do when writing parallel
particle-based simulation codes.

2. What should be done?

3. Design of FDPS

4. Current status and future plan

What we want to do
• We want to try large

simulations.

• Computers (or the

network of comput-

ers...) are fast enough

to handle hundreds of

millions of particles,

for many problems.

• In many fields, largest

simulations still em-

ploy 10M or less par-

ticles.... Canup+ 2013

What we want to do
More precisely, what we do not want to do

• We do not want to write parallel programs using
MPI.

• We do not want to modify data structure and loop
structure to make use of data caches.

• We do not want to do complicated optimizations
to hide interprocessor communications.

• We do not want to write tricky codes to let com-
pilers make use of SIMD instruction sets.

• We do not want to do machine-specific optimiza-
tions or write codes using machine-specific lan-
guages (Cuda, OpenCL, ...).

But what can we do?
Traditional ideas

• Hope that parallelizing compilers will solve all prob-
lems.

• Hope that big shared memory machines will solve
all problems.

• Hope that parallel languages (with some help of
compilers) will solve all problems.

But...

• These hopes have all been betrayed.

• Reason: low performance. Only the approach which
achieve the best performance on the most inexpen-
sive systems survives.

Then what can we really do?
1. Accept the reality and write MPI programs and do

optimization
Limitation: If you are an ordinary person the
achieved performance will be low, and yet it will
take more than infinite time to develop and debug
programs. Your researcher life is likely to finish
before you finish programming. (unless your spe-
ciality is CS)

2. Let someone else do the hard work
Limitation: If that someone else is an ordinary per-
son the achieved performance will be low, and yet
it will take more than infinite time and money.

• Neither is ideal

• We do need “non-ordinary people”.

Examples of

“non-ordinary people”

2011/2012 Gordon Bell Prize winners
Myself excluded from the photo

Problems with

“non-ordinary people”
• If you can secure non-ordinary people there might
be some hope.

• But they are very limited resource.

If we can apply “non-ordinary people” to many dif-

ferent problems, it will be the solution.

How can we apply “non-ordinary

people” to many different problems?
Our approach:

• Formulate an abstract description of the approach
of “non-ordinary people”, and apply it to many
different problem.

• “Many different” means particle-based simulations
in general.

• Achieve the above by “metaprogramming”

• DRY (Don’t Repeat Yourself) principle.

To be more specific:
Particle-based simulations includes:

• Gravitational many-body simulations

• molecular-dynamics simulations

• CFD using particle methods(SPH, MPS, MLS etc)

• Meshless methods in structure analysis etc (EFGM
etc)

Almost all calculation cost is spent in the evaluation
of interaction between particles and their neighbors
(long-range force can be done using tree, FMM, PME
etc)

Our solution
If we can develop a program which generates highly

optimized MPI programs to do

• domain decomposition (with load balance)

• particle migration

• interaction calculation (and necessary communica-
tion)

for given particle-particle interactions, that will be
the solution.

Design decisions
• API defined in C++

• Users provide

– Particle data class

– Function to calculate particle-particle interac-
tion

Our program generates necessary library functions.

• Users write their program using these library func-
tions.

Actual “generation” is done using C++ templates.

Status of the code
• Publicly available

• A single user program can be compiled to single-
core, OpenMP parallel or MPI parallel programs.

• Parallel efficiency is very high

• As of version 2.0 (released last month) GPUs can
be used.

Tutorial
FDPS Github: https://github.com/FDPS/FDPS

https://github.com/FDPS/FDPS

Domain decomposition
Each computing node

(MPI process) takes care

of one domain

Recursive Multisection

(JM 2004)

Size of each domain are

adjusted so that the cal-

culation time will be bal-

anced (Ishiyama et al.

2009, 2012)

Works reasonable well for up to 80k nodes (so far the
max number of nodes we can try)

Sample code with FDPS
1. Particle Class

#include <particle_simulator.hpp> //required
using namespace PS;
class Nbody{ //arbitorary name
public:

F64 mass, eps; //arbitorary name
F64vec pos, vel, acc; //arbitorary name
F64vec getPos() const {return pos;} //required
F64 getCharge() const {return mass;}//required
void copyFromFP(const Nbody &in){ //required

mass = in.mass;
pos = in.pos;
eps = in.eps;

}
void copyFromForce(const Nbody &out) { //required

acc = out.acc;
}

Particle class (2)
void clear() { //required

acc = 0.0;
}
void readAscii(FILE *fp) {//to use FDPS IO

fscanf(fp,
"%lf%lf%lf%lf%lf%lf%lf%lf",
&mass, &eps, &pos.x, &pos.y, &pos.z,
&vel.x, &vel.y, &vel.z);

}
void predict(F64 dt) { //used in user code

vel += (0.5 * dt) * acc;
pos += dt * vel;

}
void correct(F64 dt) { //used in user code

vel += (0.5 * dt) * acc;
}

};

Interaction function
template <class TPJ>
struct CalcGrav{

void operator () (const Nbody * ip,
const S32 ni,
const TPJ * jp,
const S32 nj,
Nbody * force) {

for(S32 i=0; i<ni; i++){
F64vec xi = ip[i].pos;
F64 ep2 = ip[i].eps

* ip[i].eps;
F64vec ai = 0.0;

Interaction function
for(S32 j=0; j<nj;j++){

F64vec xj = jp[j].pos;
F64vec dr = xi - xj;
F64 mj = jp[j].mass;
F64 dr2 = dr * dr + ep2;
F64 dri = 1.0 / sqrt(dr2);
ai -= (dri * dri * dri

* mj) * dr;
}
force[i].acc += ai;

}
}

};

Time integration (user code)

template<class Tpsys>
void predict(Tpsys &p,

const F64 dt) {
S32 n = p.getNumberOfParticleLocal();
for(S32 i = 0; i < n; i++)

p[i].predict(dt);
}

template<class Tpsys>
void correct(Tpsys &p,

const F64 dt) {
S32 n = p.getNumberOfParticleLocal();
for(S32 i = 0; i < n; i++)

p[i].correct(dt);
}

Calling interaction function through

FDPS
template <class TDI, class TPS, class TTFF>
void calcGravAllAndWriteBack(TDI &dinfo,

TPS &ptcl,
TTFF &tree) {

dinfo.decomposeDomainAll(ptcl);
ptcl.exchangeParticle(dinfo);
tree.calcForceAllAndWriteBack

(CalcGrav<Nbody>(),
CalcGrav<SPJMonopole>(),
ptcl, dinfo);

}

Main function
int main(int argc, char *argv[]) {

F32 time = 0.0;
const F32 tend = 10.0;
const F32 dtime = 1.0 / 128.0;
// FDPS initialization
PS::Initialize(argc, argv);
PS::DomainInfo dinfo;
dinfo.initialize();
PS::ParticleSystem<Nbody> ptcl;
ptcl.initialize();
// pass initeraction function to FDPS
PS::TreeForForceLong<Nbody, Nbody,

Nbody>::Monopole grav;
grav.initialize(0);
// read snapshot
ptcl.readParticleAscii(argv[1]);

Main function
// interaction calculation
calcGravAllAndWriteBack(dinfo,

ptcl,
grav);

while(time < tend) {
predict(ptcl, dtime);
calcGravAllAndWriteBack(dinfo,

ptcl,
grav);

correct(ptcl, dtime);
time += dtime;

}
PS::Finalize();
return 0;

}

Remarks
• Multiple particles can be defined (such as dark
matter + gas)

• User-defined interaction function should be opti-
mized to the given architecture for the best per-
formance (for now)

• This program runs fully parallelized with OpenMP
+ MPI.

• Total number of lines: 117

Example of calculation

Giant Impact calculation

(Hosono et al. in prep...)

Figure: 9.9M particles

Up to 2.6B particles tried

on K computer

We need more machine

time to finish large cal-

culation... Moving to

PEZY systems.

Measured performance

10-4

10-3

10-2

10-1

100

101

101 102 103 104 105 106

w
al

l c
lo

ck
 ti

m
e[

s]

of cores

total
domain decomposition

exchange particle
grav

10-1

100

101

102

103

104

105

pe
rf

or
m

an
ce

[T
F

LO
P

S
]

K
XC30

50% of TPP (K)
35% of TPP (XC30)

Measured

performance on K

computer and Cray

XC30 (Haswell Xeon)

Gravitational

N -body simulation

Weak scaling with

550M

particles/process

Strong scaling result and model

10-3

10-2

10-1

100

101

102

103

101 102 103 104 105 106

w
al

lc
lo

ck
 ti

m
e

[s
]

np

Tstep(measurement)
Tdc-Tdc,exch(measurement)

Tstep
Tdc,sort

Texch,const
Texch,comm
Ticalc,const
Ticalc,force

Strong scaling

result and

model

550M particles

on K computer

p processes:

Domain decomposition cost: ∼ O(p2/3)
Communication cost: ∼ O(p−1/3) + O(p)
We are working on reducing these terms.

FDPS summary
Iwasawa+2016 (arxive 1601.03138)

• Please visit: https://github.com/FDPS/FDPS

• A Framework for Developing parallel Particle Sim-
ulation code

• FDPS offers library functions for domain decom-
position, particle exchange, interaction calculation
using tree.

• Can be used to implement pure Nbody, SPH, or
any particle simulation with two-body interactions.

• Uses essentially the same algorithm as used in our
treecode implementation on K computer (GreeM,
Ishiyama, Nitadori and JM 2012).

• Runs efficiently on K, Xeon clusters or GPU clus-
ters

How about stencil calculation?
• For regular grid calculations, parallelization is not
so difficult.

• Performance is low and degrading for the last three
decades, due to the steady decrease of the memory
bandwidth (in terms of B/F).

• Some new approach seems necessary.

Temporal Blocking

• Read in a small localized region to on-chip memory
(cache), and update that region for multiple time
steps.

• Can reduce the required bandwidth to the main
memory.

• Algorithm which allows parallelization in 3D cal-
culation and the theoretical limit in the bandwidth
reduction were not well understood.

Optimal Temporal Blocking

Muranushi and Makino 2015

• Formulated parallel algorithm in 3D.

• Obtained the theoretical limit.

However· · ·
(Ordinary) people cannot write a program with

such a complicated algorithm. Optimization and

parallelization would be even more difficult.

Let a program write programs?
• (Ordinary) people specifies the finite difference scheme
and a bit more, such as the boundary and initial
conditions.

• Then some fancy program generates a highly opti-
mized and highly scalable program.

You would say: There’s no such thing as a free

lunch.

• Many years ago there had been... (Example: DE-
QSOL on Hitachi vector supercomputers)

• DEQSOL disappeared with vector machines...

Reinventing Wheels?
Formura https://github.com/nushio3/formura

• We are working on this problem.

• Language specification is ready. The temporal block-
ing is not, but executables can be generated.

• Temporal blocking and parallelization will be avail-
able “real soon”. (April-May timeframe this year)

Example of Formura
dimension :: 3

axes :: x, y, z

ddx = fun(a) (a[i+1/2,j,k] - a[i-1/2,j,k])/2

ddy = fun(a) (a[i,j+1/2,k] - a[i,j-1/2,k])/2

ddz = fun(a) (a[i,j,k+1/2] - a[i,j,k-1/2])/2

∂ = (ddx,ddy,ddz)

Σ = fun (e) e(0) + e(1) + e(2)

begin function init() returns dens_init

float [] :: dens_init = 0

end function

begin function dens_next = step(dens)

float :: Dx, Dt

Dx = 4.2

Dt = 0.1

dens_next = dens + Dt / Dx**2 * Σ fun(i) (∂ i . ∂ i) dens

end function

Example of Formura (2)
Previous one demonstrate how fancy you can be, us-

ing macros for finite difference operators.
I believe you can write:

dimension :: 3
axes :: x, y, z
begin function init() returns dens_init

float [] :: dens_init = 0
end function
begin function dens_next = step(dens)

float :: Dx, Dt
Dx = 4.2
Dt = 0.1
dens_next=dens+Dt/(Dx*Dx)*(dens[i,j+1,k]+dens[i,j-1,k]

+dens[i-1,j,k]+dens[i+1,j,k]
+dens[i,j,k-1]+dens[i,j,k+1]-6*dens[i,j])

end function

Summary
• It has become very difficult to develop large-scale
parallel programs, and to achieve high efficiency.

• We believe the frameworks can be the solution.

• The point is to separate

– physics and numerical schemes

– parallelization and optimization

Framework provides the latter for a specific do-
main of problems.

• For particle-based simulations, we believe our FDPS
will be useful for many researchers.

• For grid-based calculations, we are working on For-
mura.

