Development of Library for Future Meteorological/Climate Simulations: SCALE

RIKEN • AICS

Computational Climate System Research Team

Hirofumi TOMITA

Outline of my talk

- Introduction of SCALE, NICAM
 - What is NICAM/SCALE?
 - Example of large scale computation on K
 Computer:
 - SCALE: model-intercomparison, shallow cumulus
 - NICAM: Grand challenge like GCM simulation with very high resolution
- Possibility of collaboration
 - Infrastructure
 - Science

Our main tools: SCALE+NICAM-DC

Physical process library Reginoal dynamical core Nishizawa et al. (2015,GMD) Sato et al. (2015,PEPS)

Global dynamical core Tomita et al.(2001,2002,JCP) Tomita & Satoh (2004,FDR)

Our direction / concept of SCALE

Easy comparison

Reproducibility

LES-scale simulation

(1) Easy model comparison

Model inter-comparison is a key in evaluation of the reliability of the meteorological numerical simulations.

Why model intercomparison is needed?

Estimation of uncertainty of meteorological simulation

- The model is not always based on first-principle.
- The model includes many empirical rules / hypotheses
- The model has many tunable switches, (in physical parameterization)

Difficulty in validation of simulations

- limitation of observations (coverage, resolution, quantity)
- paleo/future climate, or other planets

But, P Inter-model comparisons

total performance

Intra-model comparison

individual schemes

We want to have just one model including all key components.

=> If so, Intra-model comparison is possible?

- Cloud microphysics, cumulus parameterization, radiation process, turbulence, and so on.
- dynamical cores, e.g.,
 - discretization schemes
 - order of accuracy of difference scheme
 - implicit and explicit temporal integration schemes
- In addition,
 - tunable parameters
 - precision of floating point

The difference of model results are easily understood.

1. From which does the difference come?

2. What is a key for representation of target phenomena?

Example : Intra model comparison

We can conclude (very very roughly) that

these differences are strongly depending on the cloud-microphysical schemes. <u>1-moment</u>: The faster precipitation drop : due to saturation adjustment and quick autoconversion.

<u>2-moment</u>: The small an slow precipitation : due to in growth of huge droplet.

Sato et al. 2015: Impacts of cloud microphysics on trade wind cumulus: which cloud microphysics processes contribute to the diversity in a large eddy simulation? PEPS, 2:23.

②Reproducibility/traceability

Scientific products should be able to be reproduced for the later verification => Reliability.

Openness of code, setting, and results to anyone

• SCALE is available to anyone as an open source software.

Sharing know-how

- Predecessors' knowledges have often been unpublished. (tuning parameter reasonable limiter of filter etc.)
- In our policy, we publish all knowledge of those, e.g., How does tune the parameter tuning, and how does set limiter.

③ High resolution computation : e.g. LES-scale simulations

Several added values are expected in high-resolution simulations (e.g. LES)

If more fundamental physical principles can be used, uncertainty can be expected to be reduced.

- cumulus parameterization -> cloud microphysics
- RANS -> LES

Better representation of extreme detail

- finer topography / surface conditions
- less spatial averaging

Example : Validation of large grid aspect ratio (dx/dz) in LES

<u>conventional SGS model</u>: spurious energy pile due to small mixing length <u>large aspect ratio</u>: artificial large skewness at the top of the PBL

Nishizawa et al. 2015: Influence of grid aspect ratio on planetary boundary layer turbulence in large-eddy simulations, GMD, 8, 6021-6094.

Computational performance

performance @ K computer

- above 10% of peak performance (dynamical core)
 - 5~8% for full simulation (including I/O)
- Almost perfect weak scaling up to full system (663,552 cores)
- good strong scaling

12

Future Issues to HPC

Still, validity of parameterization should be continued

- How does assumption of parameterizations affects results?
- Easy framework for this is needed.

Computational efficiency should be pursued

- efficient use of computational resource(week/strong scaling)
- Currently, a key issue is still bandwidth in DC.

Data explosion should be considered

- better data handling in pre/post processes
- Analysis also should be in parallel.

Dynamics

- Governing equations: 3-dimensional fully compressible
- Grid system: Arakawa-C type
- Temporal integration : HEVE, HEVI, HIVI
- Temporal difference : 3 steps Runge-Kutta scheme
- Spatial difference: 4th order central difference
- <u>Topography:</u> Terrain-following
- Positive definitive : **FCT** scheme

Other

- Offline/Online nesting system
- **LETKF** assimilation system

Current SCALE: if you are interested...

Physical schemes

Cloud microphysics: Kessler (Kessler, 1969) 1-moment bulk (Tomita et al., 2008) 2-moment bulk (Seiki and Nakajima, 2014) 1-moment bin (Suzuki et al., 2010) super droplet method (Shima et al., 2009, experimental)

Turbulence:

Smagorinsky SGS (Brown et al. 1994, Scotti et al. 1993) MYNN level 2.5 (Nakanishi and Niino 2004)

- Cumulus parameterization : Kain-Fritsch (in preparation)
- **Radiation**: MSTRN-X (Sekiguchi and Nakajima, 2008)
- Aerosol microphysics: 3-moment bulk (Kajino et al., 2013, experimental)
- Surface flux: Louis-type (Uno et al. 1995) Beljaars-type (Beljaars and Holtslag 1994, Wilson 2001)
- Land: Slab model with a bucket model
- Ocean: Slab ocean model
- Urban:

Single-layer urban canopy model (Kusaka et al., 2001)

Challenge! (explicit expression of cloud)

Our research community (NICAM research community)' approach: Resolve the cloud system & related process over the globe

NICAM development : ~2000 still development is continuing!

Conceptual development philosophy

Explicit resolving the cloud itself

- Use of Icosahedral grid
 - To get a quasi-homogeneous grid for computational efficiency
- nohydrostatic DC
 - To resolve cloud scale (deep convection, shallow cloud etc.)
- Sophistication of cloud expression:
 - To avoid the ambiguity of cumulus parameterization and understand the cloud dynamics

Recent results on K computer (two landmark works)

Super-high simulation : sub-km grid spaceing (Miyamoto et al. 2013, 2014 GRL, ASL) : capability computing

Many ensembles by GCRM: MJO predictability (Miyakawa et al. 2014 Nature comm.) : capacity computing

Grand Challenge on K computer!

- Horizontally 860m resolution, vertically 100 levels
 - Use of ¼~full system of K-computer
 - First ever simulation with sub km horizontal grid AGCM.
- Purpose
 - One reference solution to coarser grid simulation.
 - How is the convergence?!
 - Computationally, check the scalability at the use of full resource.
- Scientific scope:
 - How is Global "picture" of deep convections?

Why challenging? What is a challenge?

Even current High-end machine, sub-km GCM may be a demonstration simulation: However, next generation HPC enable us to integrate the long time simulation.

A snapshot of sub-km AGCM (NICAM)

Convergence of 1. number of convection 2 distance of neighboring convection

Efficiency of NICAM on K Computer

Performance efficiency

- Just after porting from ES : ~4%
- Cache optimization to stencil operators : ~5%
- Cleaning the time-wasting codes : ~7%
- Modify conditional branches, refactoring : ~10%

0.9PetaFLOPS

Weak scaling test

- Same problem size per node, same steps
- Good scalability

Where shall we go after this?

- 1. Higher resolution
- 2. Much more ensembles
- 3. More Sophisticated physics

Ultimately, one direction,..., and challenging issue is higher resolution.

AGCM milestone from GCRM to GLES?!(roughly estimate)

Assı			nption: sustained peformance 10% (we wish)				
Resolution Grid interval/ level	Tota FLO 1da sim n	al P for Y ulatio	Machine	etticie ncy (%)	Elapse time for 1day simulati on	Elapse time for 1 month simulati on	What's resolved? What is meaningful for scientific advance?
3.5km/we ar	e he	re	131TFLOPS (ES2)	15%	3.2hour	4day	Meso-scale convection system. Cold pool dynamics
800m/L 50	368	00P	10PFLOPS (K computer)	10%	10hours	12.5days	Convection resolving?
400m/L100	295	000P	1EFLOPS	10%	50min	24days	Definitely convection resolving(expected)
200m/L100	230L Ex		a scale era				Breakthrough does not exits. But good expression of deep cloud
100m/L100	18880E			Tentat	ive goal?		Insufficient for LES
50m/L200	302	Z	100EFLOPS	10%	50min	24hour	Global LES???
CLIMATE							

Possible Collaboration issue ~ along introduction of our team mission~

Direction of our research in AICS in next 5 years (Candidates of colabolation)

- Infrastructure:
 - Extension of basic library SCALE :
 - User friendly library
 - How does standard interface determine?
 - » Exchange of subroutine level is very useful for model inter or intra comparison.
 - E.g. CBLEAM activity in Japan (initiated by AICS our team)
 - Massive parallel analysis routines for acceleration of scientific output, social outcome
 - Not only acceleration of simulation itself but also acceleration of analysis phase:
 - Adding them to SCALE
 - Easy programing and high performance computing:
 - DSL(Domain Specific Language)? e.g. stencil DSL?

Direction of our research in AICS in next 5 years (Candidates of colabolation)

• Science:

- **BIG DATA assimilation:**
 - Now, developing....
 - NICAM + LETKF (with DA research team & post K priority subject)
 - » Many satellite data is available.
 - » One goal : Reanalysis data by cloud resolving model
 - SCALE+LETKF(with DA research team)
 - » PA data provides tremendous information in time and space.
 - » We are tackling to each cumulus with 30min lead time

– <u>Reginal Climate assessment! : downscale to city level</u>

- Disaster prevention and mitigation, adaptation
 - Multi-model ensemble (SCALE can do it!) drastically reduce the uncertainties for the future climate assessment in the regional model
 - Model bias reduction by data assimilation
 - » e.g. Determination of unknown parameters

– Planetary science

- Generalization of earth knowledge
- Theoretical issuu

• Moist LES theory

NICAM870m/L96 animation

NICAM 870 m - 96 levels Real Case Simulation: 25 - 26, Aug., 2012

SPIRE field-3: Study of extended-range predictability using GCSRAM RIKEN / AICS: Computational Climate Science Research Team

風龍:本名言田龍二、理研AICS複合系気候科学チーム所属、博士(理学) 2011年彗星のごとく現れ、京を用いた計算の可視化において、数々の名作を生み出してきた。2014年学位取得後、その技

2011年彗星のことく現れ、京を用いた計算の可視化において、数々の名作を生み出してきた。2014年宇区取得後、その技にますますの磨きがかかり、業界(?)でも引く手あまた。今後の活躍(研究も?)が期待される名手のホープである。